Utility Functions in Economics

- Consumption set $X=\mathbf{R}_{+}^{L}$
- Prices $p \in \mathbf{R}_{++}^{L}$
- Wealth $w \in \mathbf{R}_{++}$
- Budget set $B(p, w)=\{x \in X: p \cdot x \leq w\}$

Consumer's Problem:

(1) x^{*} is optimal if $x^{*} \in B(p, w)$ and $x^{*} \succeq x$ for all $x \in B(p, w)$.

If u represents \succeq an equivalent problem is:
(2) x^{*} is optimal if x^{*} solves $\max _{x} u(x)$ subject to $x \in B(p, w)$.

We can apply the tools of optimization theory to (2) to characterize the solution.

Useful Properties of Utility for Optimization

1. Continuity. The relation \succeq is continuous if for all $x \in X$, the sets $\{y \in X: x \succeq y\}$ and $\{y \in X: y \succeq x\}$ are closed. If \succeq is complete, transitive and continuous then there is a continuous utility function representing \succeq. Debreu [1959]
2. Differentiability. Smoothness assumptions on \succeq are sufficient to yield existence of a differentiable utility function. Debreu [1972]
3. Monotonicity. The relation \succeq is strongly monotonic if for all $x, y \in X, x \geq y, x \neq y$ implies $x \succ y$. If \succeq is strongly monotonic then any utility function representing \succeq is strictly increasing, i.e. for all $x, y \in X, x \geq y, x \neq y$ implies $u(x)>u(y)$.
4. Concavity. The function $u: \mathbf{R}_{+}^{L} \rightarrow \mathbf{R}$ is concave if for all $x, y \in \mathbf{R}_{+}^{L}$ and $\alpha \in[0,1], u(\alpha x+(1-\alpha) y) \geq$ $\alpha u(x)+(1-\alpha) u(y)$.
What would preferences have to look like in order to have a concave representation?

The preference relation \succeq is convex if for all $x \in X$ the set $\{y \in X: y \succeq x\}$ is a convex set.

Suppose that \succeq is convex and that u is a utility function representing \succeq. Then $\{x \in X: u(x) \geq k\}$ is a convex set for all k. This is weaker than concavity.

No surprise - any strictly increasing function of a utility function representing \succeq still represents \succeq.

If \succeq is convex does there exist a concave u representing \succeq ? An additional curvature condition is needed. Fenchel [1953]

The preference relation \succeq is strictly convex if $x \succeq y$, $x \neq y$ and $\alpha \in(0,1)$ implies $\alpha x+(1-\alpha) y \succ y$.

Basic Results

Suppose $X=\mathbf{R}_{+}^{L}, p \in \mathbf{R}_{++}^{L}, w \in \mathbf{R}_{++}$and \succeq is complete, transitive and continuous.

1. There is a solution, x^{*}, to the consumer's problem. [Weierstrass Theorem]
2. If in addition, \succeq is strongly monotonic then $p \cdot x^{*}=w$.
3. If in addition, \succeq is strictly convex then x^{*} is unique and there is a continuous function

$$
x^{*}: \mathbf{R}_{++}^{L} \times \mathbf{R}_{++} \rightarrow \mathbf{R}_{+}^{L}
$$

such that $x^{*}(p, w)$ solves the consumer's problem at price p and wealth w. [Uniqueness is easy. Continuity of x^{*} is not easy-it follows from Berge's Maximum Theorem]

We call the function $x^{*}(\cdot)$ the consumer's demand function.

Characterize the Demand Function

This topic for background reading only.
Suppose that \succeq is complete, transitive, strongly monotonic, strictly convex and can be represented by a twice continuously differentiable utility function u.

The consumer's problem is

$$
\begin{aligned}
& \max u(x) \\
& \text { s.t. } p \cdot x=w, x \geq 0
\end{aligned}
$$

Intuition for 2-dimensions:

1. An indifference curve (a level set of \mathbf{u}) is $x_{2}\left(x_{1}\right)$ such that $u\left(x_{1}, x_{2}\left(x_{1}\right)\right)=c$ where c is a constant. The slope of this curve is $x_{2}^{\prime}=-u_{1} / u_{2}$, using the notation u_{i} to denote the partial derivative of u with respect to x_{i}.
2. A solution to the consumer's problem will be interior, at $x^{*} \gg 0$, if indifference curves do not intersect the axis. [$u_{i}(x) \rightarrow \infty$ as $x_{i} \rightarrow 0$ for all i and all x]
3. At such an optimum, x^{*}, the slope of the indifference curve through x^{*} and the constraint $p \cdot x=w$ must be equal. So $-u_{1}\left(x^{*}\right) / u_{2}\left(x^{*}\right)=-p_{1} / p_{2}$.
4. Rewriting this we have $u_{1}\left(x^{*}\right) / p_{1}=u_{2}\left(x^{*}\right) / p_{2}=\lambda^{*}$ where λ^{*} is the common value of the ratio.
5. So at an interior optimum, $\left(x^{*}, \lambda^{*}\right)$ solves

$$
\begin{aligned}
p \cdot x^{*}-w & =0 \\
u_{i}\left(x^{*}\right)-\lambda^{*} p_{i} & =0 \quad \text { for all i. }
\end{aligned}
$$

6. The equation system above is necessary for any L. [The Lagrange Theorem]
7. We have $L+1$ equations in $L+1$ unknowns. Given our assumptions there is a unique solution and it is the consumer's optimum. This defines solution functions $x^{*}(p, w), \lambda^{*}(p, w)$.
8. To describe how a change in an exogenous variable p_{i} or m affects the solution we can substitute the solution functions into (5) and differentiate.

A Simple Example

Suppose $u\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)$, and $f_{i}^{\prime}\left(x_{i}\right)>0$ and $f_{i}^{\prime \prime}\left(x_{i}\right)<0$ for all x_{i} and all i.
[Interpretation- x_{t} consumption in period t.]
We can write the consumer's problem as

$$
\max _{x_{1}} f_{1}\left(x_{1}\right)+f_{2}\left(\frac{w-p_{1} x_{1}}{p_{2}}\right)
$$

At an optimal choice

$$
f_{1}^{\prime}\left(x_{1}\right)+f_{2}^{\prime}\left(\frac{w-p_{1} x_{1}}{p_{2}}\right)\left(\frac{-p_{1}}{p_{2}}\right)=0
$$

Let $x_{1}^{*}(p, w)$ be the solution. So

$$
f_{1}^{\prime}\left(x_{1}^{*}(p, w)\right)+f_{2}^{\prime}\left(\frac{w-p_{1} x_{1}^{*}(p, w)}{p_{2}}\right)\left(\frac{-p_{1}}{p_{2}}\right) \equiv 0
$$

Differentiate with respect to w and solve to get

$$
\frac{\partial x_{1}^{*}}{\partial w}=\frac{f_{2}^{\prime \prime} p_{1}}{f_{1}^{\prime \prime}\left(p_{2}\right)^{2}+f_{2}^{\prime \prime}\left(p_{1}\right)^{2}}>0
$$

Increasing wealth, w, increases the demand for x_{1}. By symmetry $\frac{\partial x_{2}^{*}}{\partial w}>0$.

The Value of the Problem

Suppose that \succeq is complete, transitive, strongly monotonic, and can be represented by a continuous utility function u.

Define the indirect utility function

$$
\begin{aligned}
& V(p, m)=\max u(x) \\
& \quad \text { s.t. } p \cdot x=w, x \geq 0
\end{aligned}
$$

It is easy to show that V is non-increasing in p, strictly increasing in w and that the set $\{(p, w): V(p, w) \leq u\}$ is convex for any u.

Suppose that $V\left(p^{\prime}, w\right)=V\left(p^{\prime \prime}, w\right)$ and $\hat{p}=p^{\prime} / 2+p^{\prime \prime} / 2$. Which environment, \hat{p} or p^{\prime}, does the consumer prefer?

The Dual Problem

Since V is strictly increasing in w we can invert it. Let $e(p, u)$ be this inverse.

Or equivalently, we can define the expenditure function

$$
\begin{aligned}
& e(p, u)=\min p \cdot x \\
& \quad \text { s.t. } u(x) \geq u, x \geq 0
\end{aligned}
$$

It is easy to show that u is non-decreasing in p_{i}, strictly increasing in u and concave in p.

References

Debreu, 1959, The Theory of Value, New York, Wiley.
Debreu, 1972, "Smooth Preferences", Econometrica. Fenchel, 1953, Convex Cones, Sets, and Functions, Princeton, Princeton University.

