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1 Why Beliefs?

VnM Expected Utility:

There is a state space S (which, for the moment only, is finite) and an
objective probability distribution p on S. There is also a set O of outcomes.
An act is a map f : S → O. A preference order � is a VnM order if acts
are ranked by expected utility. That is, there is a payoff function u : O → R
such that

f � g iff
∑

s

u
(

f(s)
)

p(s) ≥
∑

s

u
(

g(s)
)

p(s) (1)

Why is this VnM? Where are the probability distributions on out-
comes? To each act f we can associate a probability distribution pf on O,
such that f � g iff

∑

o u(o)pf(o) ≥
∑

o u(o)pg(o). To see this, define pf(o) to
be the probability that outcome o is realized with act f . That is,

pf (o) =
∑

{s:f(s)=o}

p(s)
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So,

∑

s

u
(

f(s)
)

p(s) =
∑

o

∑

{s:f(s)=o}

u
(

f(s)
)

p(s)

=
∑

o

∑

{s:f(s)=o}

u(o)p(s)

=
∑

o

u(o)pf(o)

This is just the familiar change of variables formula from basic stats. Where
can probabilities come from?

1. Frequencies

2. Beliefs — expressed by asking

3. Beliefs — expressed through behavior

Empirical frequencies are fine for bets at Las Vegas. But not for lots of
things. Savage wrote in 1954 that “I, personally, consider it more probable
that a Republican president will be elected in 1996 than that it will snow
in Chicago sometime in the month of May, 1994. But even this late spring
snow seems to me more probable than that Adolf Hitler is still alive.”

1. A Dem was elected in 1996.

2. I couldn’t find 1994 data, but Chicago had May snow in both 2001 and
in 2002.

3. Hitler?

Savage’s idea is to derive beliefs from preferences. (And presumably
preferences can be elicited by presenting people with choices.) Eliciting a
DM’s preferences over various acts — bets on events A and B — will tell us
which event the DM thinks is more likely. That is, we will derive an ordering

�
on events in which A

�
B means that the DM believes A to be more

likely than B. This order is called a qualitative probability or a comparative
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probability. He goes on to give conditions under which this order can be
represented by a probability distribution p, and further conditions under
which the preference ordering has a representation like that of equation (1)
with respect to p. So “why beliefs”? Because in a well-structured theory
of choice under uncertainty, subjective probability can play the same role
that objective, which is to say frequentist, probability can play in the VnM
choice theory. From preferences we derive a probability distribution p on S
such that with an approprite payoff function u : O → R also derived from
preferences, the representation 1 holds.

2 Representing Beliefs

This section is just a list of ways that beliefs can be represented:

• qualitative probability

• probability (Kolmogorov)

– Objective — frequentist

– Subjective

• plausibility measure

• possibility measure

• belief functions

• capacities

• sets of probability measures

• conditional probability systems

There are reasons for eliciting belief that are distinct from decision theory,
and the connection of some of these representations to decision theory is not
known by me.
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3 Qualitative Probability Defined

Subjective probability attempts to make precise the connection between co-

herent views of uncertainty and quantitative (Kolmogorov) probability. It
accommodates the following views:

• Classical: Bayes, Laplace

• Intuitive: B.O. Koopman, I. J. Good

• Decision: Ramsey, De Finetti, Savage

Other writers view qualitative probability as an alternative to traditional
probability, possibly weaker. This group includes Keynes and our own T.
Fine. The notes should develop more on this.

We are given a set S of states, and an algebra of events S, which are
subsets of S. What does this mean?

1. S ∈ S

2. ∅ ∈ S

3. if A and B are in S, so is A ∩ B.

4. if A ∈ S, then Ac ∈ S.

Why are these assumptions about what constitutes observable events natu-
ral?

Definition 1. A qualitative probability structure is a triple (S,S,
�

) such

that

1.
�

is a preference order;

2. S
�
∅ and for all A ∈ S, A � ∅;

3. if A is disjoint from both B and C, then B
�

C iff A ∪ B
�

A ∪ C.
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4 Derivation of Qualitative Probabilities

A decision problem is described by

States S

Events S

Outcomes O

Acts f : S → O. Suppose that acts are simple, that the range of f is finite.
The set of all simple acts is A.

Preferences A binary relation � on A.

Savage introduces the following axioms, which will be sufficient to
generate a qualitative probability.

Axiom 1. � is a preference relation.

Without this axiom there is nothing to do.

Identify each outcome o ∈ O with the constant act which pays out o regard-
less of the state. The preference order � on A induces a preference order �
on O through its ordering of the constant acts. We use the same symbol for
both preference orders because it really is the same order on both sets.

Axiom 2. There are x and y in O such that x � y.

Without this axiom the theory would be trivial.

Now we introduce some new notation. Given acts f and g and event A,
define the act

fAg(s) =

{

f(s) if s ∈ A,

g(s) otherwise.

This act pays off according to f if s ∈ A and according to g if s /∈ A. More
generally, we will define the act x1

A1
· · ·xn−1

An−1
xn to be the act which gives

outcome xk when s ∈ Ak, and xn when s ∈ (A1 ∪ · · · ∪ An−1)
c.
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Axiom 3. For all acts f , g and h fAh � gAh iff for all k, fAk � gAk.

This axiom states that if f and g differ only on A, then the comparison
between them should depend only upon how they behave on A. So if we vary
f and g in any way off of A, then so long as we vary them identically, the
ranking between them should not change. This axiom seems very appealing,
but we shall see that it can be violated in practice.

This axiom gives us a plausible way of defining preferences conditional
on some event. Given f and g, how do I feel about them if I am told that
event A will happen? To answer this question, modify f and g so that
they behave identically off of A, and see how I feel about the modified acts.
Axiom 3 states that the results of this comparison will be independent of the
modification. This allows the derivation of a conditional preference given an
event A.

Definition 2. f �A g iff there is an act h such that fAh � gAh.

Proposition 1. �A is a preference order.

Exercise 1. Prove this.

Some events simply do not matter. We can express this in several ways. For
instance, if f and g are any acts, how I feel about them is determined by
their behavior off of A. That is, f � g iff f �Ac g. An equivalent formulation
of this idea is given in the following definition:

Definition 3. An event A is null if for all f and g, f ∼A g.

The following properties of null events are easy to prove.

Proposition 2. The following statements are true of null events:

1. S is not null,

2. ∅ is null,

3. if A is null and B ⊂ A, then B is null,

4. if A and B are disjoint, and null, then A ∪ B is null.
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Proof. To Come.

Exercise 2. Prove that 4 holds for all null events, and not just disjoint null

events.

The next proposition is known as the sure thing principle. Its content
is intuitive: If I prefer f to g given A, and if I prefer f to g given Ac, then
unconditionally I should prefer f to g.

Proposition 3. If B1, . . . , Bn is a partition of S by elements of S and f �Bi

g for all i, then f � g. If for any one such i, f � Bi, then f � g.

The next axiom says that preferences over outcomes do not depend upon
the state. Conditional preferences given any event over pure outcomes are
indentical to unconditional preferences.

Axiom 4. If A is not null, then x �A y iff x � y.

A qualitative probability will be constructed by examining “bets” on
events: If event A happens, the decisionmaker wins and gets a winning prize.
If A does not happen, the decisionmaker loses and gets a losing prize (worse
than the winning prize). It makes sense to interpret a preference for a bet
on A over the same bet on B as a claim that A is more likely than B. In
order for this to make work, preferences on bets must be independent of the
particular winning and losing prizes. This is the content of the next axiom.

Axiom 5. If x � y and w � z, then for any pair of events A and B,

xAy � xBy iff wAz � wBz.

Concretely, if a decisionmaker prefers a dollar bet on the event that Cornell
will win the ECAC Hockey title this year to a dollar bet on the event that
Cornell will finish last, then the DM should prefer $10, $100, etc., bets on
Cornell winning to the same dollar bet that Cornell will finish last. If x � y,
think of the act xAy as a bet on A.

Axiom 5 makes possible the following definition of a likelihood order on
events:
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Definition 4. For all A and B in S, A
�

B iff there are outcomes x � y in

O such that xAy � xBy.

This likelihood ordering of acts is a qualitative probability on S. Thus pref-
erences encode (qualitative) beliefs.

Proposition 4. A � B iff there is an x � y such that xAy � xBy.

Proof. Suppose not B
�

A. Then for all x � y, not xBy � xAy, and so for
all such x, y pairs, xAy � xBy.

Suppose xAy � xBy. Then not xBy � xAy, and so Axiom 5 implies
that for all w � z, not wBz � wAz. Consequently, not B

�
A, and so

A � B.

Theorem 1.
�

is a qualitative probability order on S.

Proof. 1.
�

is asymmetric. If A
�

B, then xAy � xBy, and Axiom 5
implies that for all w � z, wAz � wBz. From Axiom 1 it follows that
for no w � z is wBz � wAz. Suppose not A

�
B and not B

�
C.

Then for all x � y, not xAy � xBy and not xBy � xCy. Axiom 1
implies that for all x � y, not xAy � xCy. Therefore not A

�
C.

2. We have already shown that, as a consequence of Axiom 3, S
�

∅.
Choose x � y. First, suppose that A is null. Then xAy ≡ y = x∅y,
so according to Proposition 4, A � ∅. If A is not null, then for any
x � y, x �A y according to Axioms 2 and 4. Thus xAy � yAy = y∅y,
so A

�
∅.

3. Suppose C is disjoint from A and B, and A
�

B. Choose x � y.
Then xAy � xBy. Since C ⊂ (A ∪ B)c, and since both acts take on
the value y, on (A∪B)c, Axiom 3 says that if both acts are modified
identically on C, then their ranking remains unchanged. Thus

xA∪Cy = xAxCy � xBxCy = xB∪Cy .

In the other direction, suppose A ∪ C
�

B ∪ C. The same argument
shows that A

�
B.
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Null events can be interpreted with the qualitative probability. We have
already shown that if A is null, then A ≡ ∅. The other direction is true as
well.

Proposition 5. For any event A ∈ S, A ≡ ∅ iff A is null.

Proof. We need only prove that if A ≡ ∅, then A is null. If A ≡ ∅, then for
any x � y, xAy ∼ y = y. From Axiom 4 infer that A is null.

Recall the steps in the Savage program:

1. Derive beliefs from preferences.

2. Represent the beliefs by a probability distribution p.

3. Show that preferences depend only on distributions of outcomes under
p. Specifically, if the two distributions on outcomes pf and pg are equal,
then f ∼ g. This means that preferences on acts generate preferences
on probability distributions of outcomes.

4. Show that the preferences on probability distributions of outcomes are
vNM.

We cannot do step 2 without more assumptions. Savage makes additional
assumptions on preferences that essentially guarantee that for any n one can
divide S up into n equally likely sets. In the notes I have proved Suppe’s
Theorem:

Theorem 2 (Suppes Theorem). Suppose (X,S,�) is a finite qualitative

probability structure such that if A
�

B, there is a C ∈ S such that A ≡
B ∪ C. Then � has a probability representation.

The assumption on the qualitative probability can be rephrased directly in
terms of preferences on bets:

Axiom 6. For every x � y and A, B such that xAy � xBy, there is an event

C such that xAy ∼ xB∪Cy.
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With this assumption, Suppe’s Theorem completes part two of the
Savage program. S is finite and

�
is represented by the probability distribu-

tion which puts equal weight on all points of S.

Theorem 3. If f and g are two acts such that pf = pg, then f ∼ g.

Proof. Prove this by induction on the number of outcomes n that f and g
take on. If n = 1 the acts are constant acts, and so if pf = pg the acts are
identical and the conclusion follows from the asymmetry of �.

For n = 2 the acts are of the form f = xAy and g = xBy. The
distributions pf and pg are equal iff A ≡ B, which is true iff f ∼ g by
definition.

Suppose the conclusion is true for all functions taking on no more
than n − 1 ≥ 2 values. Suppose f and g take on the values x1, . . . , xn, and
that pf = pg. For all k ≤ n, #g−1(xk) = #h−1(xk), since p is uniform on S.

Choose any two states s′ and s′′. Define f ′ such that

f ′(s) =











f(s′′) if s = s′,

f(s′) if s = s′′,

f(s) otherwise.

The function f ′ is constructed from f by permuting its values at states s′

and s′′. First we show that f ′ ∼ f . Suppose without loss of generality that
f(s′), f(s′′) 6= xn, and let A = {s : f(s) 6= xn}. Let g = fAx1 and h = f ′

Ax1,
so that both functions take on only the values x1, . . . , xn−1. For all k ≤ n−1,
#g−1(xk) = #h−1(xk), and all states are equally likely, so their distributions
under p are identical. The induction hypothesis implies that g ∼ h. Axiom
3 implies that f ∼ f ′ since f and f ′ agree on Ac, g agrees with f on A and
h agrees with f ′ on A. By a finite sequence of such pairwise permutations,
f can be transformed into g. Consequently Axiom 1 implies that f ∼ g.

5 Savage’s Approach

Savage assumes the following:
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Axiom 7. If f � g and x ∈ O, then there is a partition B1, . . . , Bn of S
such that fBi

x � g and f � gBi
x for all i.

This axiom can only hold if S is not finite. It implies a similar statement
about

�
.

Proposition 6. If Axiom 6 is satisfied and if A
�

B, then there is a partition

C1, . . . , Cn of S such that for all i, A
�

B ∪ Ci.

Exercise 3. Prove this.

Savage goes on to show the following

Theorem 4. If a qualitative probability
�

satisfies the conclusion of Propo-

sition 6, then there is a unique probability distribution p on (S,S) which

represents
�
. Moreover, for any 0 ≤ α ≤ 1 and B ∈ S there is a C ∈ S

such that p(C) = αp(B).

6 Savage and Utility

In this section we assume that O is finite, and that Axioms 1 through 6 hold.
Then

�
has a representation p. We also assume without proof the conclusion

of Theorem 3; that if f and g are two acts such that pf = pg, then f ≡ g.
Now how do we get to utility?

From Theorem 3 it is clear that � on acts induces an order � on
probability distributions: µ � ν iff there are acts f and g such that µ =
pf , ν = pg, and f � g. The ordering on probability distributions is a
preference order. We will also see that it satisfies the independence axiom and
the Archimdean axioms of vNM. This guarantees the existence of a utility
function u : O → R such that pf � pg iff

∑

o u(o)pf(o) >
∑

o u(o)pg(o).
Changing variables,

∫

u
(

f(s)
)

dp(s) >
∫

u
(

g(s)
)

dp(s).

One consequence of finiteness that we need is:

Proposition 7. There are x, y ∈ O such that for all acts f , x � f � y.
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Exercise 4. Prove this.

First I roughly argue independence.

Theorem 5 (Independence). If pf , pg and ph are distributions induced

by acts f , g and h respectively, and if 0 < α ≤ 1, then αpf + (1 − α)ph �
αpg + (1 − α)ph iff pf � pg.

Proof. Let fi index the values of f , etc. Let Bi = f−1(fi), and Ci = g−1(gi).
Construct Dij ⊂ Bi∩Cj such that p(Dij) = αp(Bi∩Cj), and let D = ∪i,jDij.
Then p(D) = α, p(Bi|D) = p(Bi) and p(Cj|D) = p(Cj). The theorem says
that f �D g iff f � g. (Rebuild h on Dc.) Theorem 3 says that the validity
of this statement does not depend on the particular choice of D so long as
the required distributional constraints are met. So we will say that f �α g
iff f �D g for some D constructed as above.

1. f �1/2 g iff f � g. Construct D as above. Then fDg ∼ gDf follows
from Theorem 3. If fDg � g, then gDf � g by Axiom 1. According to
the definition of conditional preference, f �D g. Similarly, f �Dc g. It
follows from the sure thing principle that f � g. In the other direction,
if g � fDg, then the same argument concludes that g � f .

2. f �1/n g iff � g. Let D1
ij, . . . , D

n
ij denote a partition of Bi ∩ Cj into n

equiprobable pieces. Let Dk = ∪i,jD
k
ij, etc. Again, fDkg ∼ fDlg for all

k, l. The same argument shows that f � g iff f �Dk g.

3. f �k/n giff f � g. f � g iff fDlg � g. The sets Dl are disjoint. The
sure thing principle states that this is true iff fD1∪···∪Dkg � g, and so
f �D1∪···∪Dk g.

4. f �α g iff f � g. For any n there is a k such that k/n ≤ α ≤ (k+1)/n.
From Axiom 7 and Proposition 7 can (tediously) show the result. This
will be the same argument that gives you the Archimedean property.

The Archimedean property follows from Axiom 7 and Proposition 7.
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