EXTRA SLIDES ON SMOOTHING

Notation: $\mathrm{N}_{\mathrm{c}}=$ Frequency of frequency c

- $\mathrm{N}_{\mathrm{c}}=$ the count of things we've seen c times
- Sam I am I am Sam I do not eat

I 3
sam 2
$\mathrm{N}_{1}=3$
am 2
$\mathrm{N}_{2}=2$
do 1
$\mathrm{N}_{3}=1$
not 1
eat 1

Good-Turing Smoothing Intuition

- You are fishing (a scenario from Josh Goodman), and caught:
- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
- 1/18
- How likely is it that next species is new (i.e. catfish or bass)
- Let's use our estimate of things-we-saw-once to estimate the new things.
- $3 / 18$ (because $N_{1}=3$)
- Assuming so, how likely is it that next species is trout?
- Must be less than 1/18
- How to estimate?

Good-Turing Calculations

$P_{G T}^{*}($ things with zero frequency $)=\frac{N_{1}}{N}$

$$
c^{*}=\frac{(c+1) N_{c+1}}{N_{c}}
$$

Unseen (bass or catfish)

- $c=0$:
- MLE p $=0 / 18=0$
- $P^{*}{ }_{\text {GT }}($ unseen $)=N_{1} / N=3 / 18$

Seen once (trout)

- $c=1$
- MLE p = $1 / 18$
- $C^{*}($ trout $)=2{ }^{*} \mathrm{~N}_{2} / \mathrm{N}_{1}=2 * 1 / 3=2 / 3$
- $\mathrm{P}_{\mathrm{GT}}^{*}($ trout $)=2 / 3 / 18=1 / 27$

Good-Turing Complications

- Problem: what about
"the"? (say c=4417)
- For small $k, N_{k}>N_{k}+1$
- For large k, too jumpy, zeroes wreck estimates

- Simple Good-Turing [Gale and Sampson]: replace empirical N_{k} with a best-fit power law once counts get unreliable

Good-Turing Numbers

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

$$
c^{*}=\frac{(c+1) N_{c+1}}{N_{c}}
$$

- It sure looks like

$$
c^{\star}=(c-.75)
$$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Absolute Discounting

- Idea: observed n-grams occur more in training than they will later:

Count in 22M Words	Future c* (Next 22M)
1	0.448
2	1.25
3	2.24
4	3.23

- Absolute Discounting (Bigram case)
- No need to actually have held-out data; just subtract 0.75 (or some d)

$$
c^{*}(v, w)=c(v, w)-0.75 \text { and } q(w \mid v)=\frac{c^{*}(v, w)}{c(v)}
$$

- But, then we have "extra" probability mass

$$
\alpha(v)=1-\sum_{w} \frac{c^{*}(v, w)}{c(v)}
$$

- Question: How to distribute a between the unseen words?

Katz Backoff

- Absolute discounting, with backoff to unigram estimates

$$
c^{*}(v, w)=c(v, w)-\beta \quad \alpha(v)=1-\sum_{w} \frac{c^{*}(v, w)}{c(v)}
$$

- Define seen and unseen bigrams:
$\mathcal{A}(v)=\{w: c(v, w)>0\} \quad \mathcal{B}(v)=\{w: c(v, w)=0\}$
- Now, backoff to maximum likelihood unigram estimates for unseen

$$
q_{B O}(w \mid v)= \begin{cases}\frac{c^{*}(v, w)}{c(v)} & \text { If } w \in \mathcal{A}(v) \\ \alpha(v) \times \frac{q_{M L}(w)}{\sum_{w^{\prime} \in \mathcal{B}(v)} q_{M L}\left(w^{\prime}\right)} & \text { If } w \in \mathcal{B}(v)\end{cases}
$$

- Can consider hierarchical formulations: trigram is recursively backed off to Katz bigram estimate, etc
- Can also have multiple count thresholds (instead of just 0 and >0)
- Problem?
- Unigram estimates are bad predictors

Kneser-Ney Smoothing

- Better estimate for probabilities of lower-order unigrams!
- Shannon game: I can't see without my reading__Fyatassieso ?
- "Francisco" is more common than "glasses"
- ... but "Francisco" always follows "San"
- Instead of $P(w)$: "How likely is w"
- $P_{\text {continuation }}(w)$: "How likely is w to appear as a novel continuation?
- For each word, count the number of bigram types it completes
- Every bigram type was a novel continuation the first time it was seen

$$
P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

Kneser-Ney Smoothing

- How many times does w appear as a novel continuation:

$$
P_{\text {CONTINUATION }}(w) \propto\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|
$$

- Normalized by the total number of word bigram types

$$
\begin{gathered}
\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right| \\
P_{\text {CONTINUATION }}(w)=\frac{\left|\left\{w_{i-1}: c\left(w_{i-1}, w\right)>0\right\}\right|}{\left|\left\{\left(w_{j-1}, w_{j}\right): c\left(w_{j-1}, w_{j}\right)>0\right\}\right|}
\end{gathered}
$$

Kneser-Ney Smoothing

- A frequent word (Francisco) occurring in only one context (San) will have a low continuation probability
- Replace unigram in discounting:

$$
P_{K N}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left(c\left(w_{i-1}, w_{i}\right)-d, 0\right)}{c\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) P_{\text {CONTINATION }}\left(w_{i}\right)
$$

λ is a normalizing constant; the probability mass we've discounted

$$
\begin{aligned}
& \qquad \lambda\left(w_{i-1}\right)=\frac{d}{c\left(w_{i-1}\right)}\left|\left\{w^{*}: c\left(w_{i-1}, w\right)>0\right\}\right| \\
& \text { the normalized discount }
\end{aligned} \begin{aligned}
& \text { The number of word types that can follow } w_{i-1} \\
& 75
\end{aligned} \begin{aligned}
& \text { = \# of word types we discounted } \\
& \text { = \# of times we applied normalized discount }
\end{aligned}
$$

Kneser-Ney Smoothing: Recursive Formulation

$$
\begin{aligned}
& P_{K N}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\max \left(c_{K N}\left(w_{i-n+1}^{i}\right)-d, 0\right)}{c_{K N}\left(w_{i-n+1}^{i-1}\right)}+\lambda\left(w_{i-n+1}^{i-1}\right) P_{K N}\left(w_{i} \mid w_{i-n+2}^{i-1}\right) \\
& c_{K N}(\bullet)=\left\{\begin{array}{c}
\operatorname{count}(\bullet) \text { for the highest order } \\
\operatorname{continuationcount}(\bullet) \text { for lower order }
\end{array}\right.
\end{aligned}
$$

Continuation count $=$ Number of unique single word contexts for •

Smoothing at Web-scale

- "Stupid backoff" (Brants et al. 2007)
- No discounting, just use relative frequencies

$$
\begin{aligned}
& S\left(w_{i} \mid w_{i-k+1}^{i-1}\right)=\left\{\begin{array}{c}
\frac{\operatorname{count}\left(w_{i-k+1}^{i}\right)}{\operatorname{count}\left(w_{i-k+1}^{i-k}\right)} \text { if } \operatorname{count}\left(w_{i-k+1}^{i}\right)>0 \\
0.4 S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) \quad \text { otherwise }
\end{array}\right. \\
& S\left(w_{i}\right)=\frac{\operatorname{count}\left(w_{i}\right)}{N}
\end{aligned}
$$

${ }^{1}$ The name originated at a time when we thought that such a simple scheme cannot possibly be good. Our view of the scheme changed, but the name stuck.

