
EXTRA SLIDES ON 
SMOOTHING



Notation: Nc = Frequency of 
frequency c

• Nc = the count of things we’ve seen c times
• Sam I am I am Sam I do not eat
I   3

sam 2

am  2

do  1

not 1

eat 1

N1 = 3
N2 = 2
N3 = 1



Good-Turing Smoothing Intuition
• You are fishing (a scenario from Josh Goodman), and 

caught:
– 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish

• How likely is it that next species is trout?
– 1/18

• How likely is it that next species is new (i.e. catfish or bass)
– Let’s use our estimate of things-we-saw-once to estimate the 

new things.
– 3/18 (because N1=3)

• Assuming so, how likely is it that next species is trout?
– Must be less than 1/18
– How to estimate? 



Good-Turing Calculations

Seen once (trout)
§ c = 1
§ MLE p = 1/18
§ C*(trout) = 2 * N2/N1 = 2 * 1/3 = 2/3 
§ P*GT(trout) = 2/3 / 18 = 1/27

Unseen (bass or catfish)
§ c = 0:
§ MLE p = 0/18 = 0
§ P*

GT (unseen) = N1/N = 3/18

c*= (c+1)Nc+1

Nc

PGT
* (things with zero frequency) = N1

N



Good-Turing Complications
• Problem: what about 

“the”?  (say c=4417)
– For small k, Nk > Nk+1
– For large k, too jumpy, 

zeroes wreck estimates

– Simple Good-Turing 
[Gale and Sampson]: 
replace empirical Nk with 
a best-fit power law once 
counts get unreliable

N1
N2 N3

N1
N2



Good-Turing Numbers
• Numbers from Church 

and Gale (1991)
• 22 million words of AP 

Newswire

• It sure looks like 
c* = (c - .75)

c*= (c+1)Nc+1

Nc

Count 
c

Good Turing c*

0 .0000270
1 0.446
2 1.26
3 2.24
4 3.24
5 4.22
6 5.19
7 6.21
8 7.24
9 8.25



Absolute Discounting
• Idea: observed n-grams occur more in training than they will later:

• Absolute Discounting (Bigram case)
– No need to actually have held-out data; just subtract 0.75 (or some d)

– But, then we have “extra” probability mass

– Question: How to distribute α between the unseen words?

Count in 22M Words Future c* (Next 22M)
1 0.448

2 1.25

3 2.24
4 3.23

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

c⇤(v, w) = c(v, w)� 0.75 and q(w|v) = c⇤(v, w)

c(v)



Katz Backoff
§ Absolute discounting, with backoff to unigram estimates

§ Define seen and unseen bigrams:

§ Now, backoff to maximum likelihood unigram estimates for unseen 
bigrams

§ Can consider hierarchical formulations: trigram is recursively 
backed off to Katz bigram estimate, etc

§ Can also have multiple count thresholds (instead of just 0 and >0)
§ Problem? 

§ Unigram estimates are bad predictors

↵(v) = 1�
X

w

c⇤(v, w)

c(v)

qBO(w|v) =
(

c
⇤(v,w)
c(v) If w 2 A(v)

↵(v)⇥ qML(w)P
w02B(v) qML(w0) If w 2 B(v)

A(v) = {w : c(v, w) > 0} B(v) = {w : c(v, w) = 0}

c⇤(v, w) = c(v, w)� �



Kneser-Ney Smoothing
• Better estimate for probabilities of lower-order 

unigrams!
– Shannon game:  I can’t see without my 

reading___________?
– “Francisco” is more common than “glasses”
– … but “Francisco” always follows “San”

• Instead of  P(w): “How likely is w”
• Pcontinuation(w):  “How likely is w to appear as a novel 

continuation?
– For each word, count the number of bigram types it 

completes
– Every bigram type was a novel continuation the first time it 

was seen
PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

Franciscoglasses



Kneser-Ney Smoothing

• How many times does w appear as a 
novel continuation:

• Normalized by the total number of word 
bigram types

PCONTINUATION (w) =
{wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0}

PCONTINUATION (w)∝  {wi−1 : c(wi−1,w)> 0}

{(wj−1,wj ) : c(wj−1,wj )> 0}



Kneser-Ney Smoothing
• A frequent word (Francisco) occurring in only one 

context (San) will have a low continuation probability
• Replace unigram in discounting:

75

PKN (wi |wi−1) =
max(c(wi−1,wi )− d, 0)

c(wi−1)
+λ(wi−1)PCONTINUATION (wi )

λ(wi−1) =
d

c(wi−1)
{w : c(wi−1,w)> 0}

λ is a normalizing constant; the probability mass we’ve discounted

the normalized discount
The number of word types that can follow wi-1 
= # of word types we discounted
= # of times we applied normalized discount



Kneser-Ney Smoothing: Recursive 
Formulation

PKN (wi |wi−n+1
i−1 ) = max(cKN (wi−n+1

i )− d, 0)
cKN (wi−n+1

i−1 )
+λ(wi−n+1

i−1 )PKN (wi |wi−n+2
i−1 )

cKN (•) =
count(•)   for the highest order

continuationcount(•)    for lower order

!
"
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Continuation count = Number of unique single 
word contexts for �



Smoothing at Web-scale
• “Stupid backoff” (Brants et al. 2007)
• No discounting, just use relative frequencies 

S(wi |wi−k+1
i−1 ) =

count(wi−k+1
i )

count(wi−k+1
i−1 )

  if  count(wi−k+1
i )> 0

0.4S(wi |wi−k+2
i−1 )      otherwise
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S(wi ) =
count(wi )

N


