Self-Attention and Transformers

Instructor: Yoav Artzi

Slides adapted from Greg Durrett
Overview

- Motivation
- Self-Attention and Transformers
- Encoder-decoder with Transformers
Encoders

- RNN: map each token vector to a new context-aware token embedding using an autoregressive process.

- CNN: similar outcome, but with local context using filters.

- Attention can be an alternative method to generate context-dependent embeddings.
LSTM/CNN Context

- What context do we want token embeddings to take into account?

The ballerina is very excited that she will dance in the show.

- What words need to be used as context here?
 - Pronouns context should be the antecedents (i.e., what they refer to)
 - Ambiguous words should consider local context
 - Words should look at syntactic parents/children

- Problem: very hard with RNNs and CNNs, even if possible
LSTM/CNN Context

- Want:

 The ballerina is very excited that she will dance in the show.
- LSTMs/CNNs: tend to be local

- To appropriately contextualize, need to pass information over long distances for each word
Self-attention

- Each word is a *query* to form attention over all tokens
- This generates a context-dependent representation of each token: a weighted sum of all tokens
- The attention weights dynamically mix how much is taken from each token
- Can run this process iteratively, at each step computing self-attention on the output of the previous level

[Vaswani et al. 2017]
Self-attention

• Each word is a **query** to form attention over all tokens

• This generates a context-dependent representation of each token: a weighted sum of all tokens

• The attention weights dynamically mix how much is taken from each token

• Can run this process iteratively, at each step computing self-attention on the output of the previous level

[Vaswani et al. 2017]
Self-attention w/Dot-product

\(k \): level number
\(X \): input vectors
\(X = x_1, \ldots, x_n \)
\(x_i^1 = x_i \)
\(\bar{\alpha}_{i,j}^k = x_i^{k-1} \cdot x_j^{k-1} \)
\(\alpha_i^k = \text{softmax}(\bar{\alpha}_{i,1}^k, \ldots, \bar{\alpha}_{i,n}^k) \)
\(x_i^k = \sum_{i=1}^{n} \alpha_i^k \cdot x_j^{k-1} \)

[The movie was great]

[Vaswani et al. 2017]
Multiple Attention Heads

- Multiple attention heads can learn to attend in different ways.

- Why multiple heads? Softmax operations often end up peaky, making it hard to put weight on multiple items.

- Requires additional parameters to compute different attention values and transform vectors.

- Analogous to multiple convolutional filters.

The movie was great.
Multiple Attention Heads

\(k \): level number
\(L \): number of heads
\(X \): input vectors
\(X = x_1, \ldots, x_n \)
\(x_i^1 = x_i \)
\(\tilde{\alpha}_{i,j}^{k,l} = x_i^{k-1} Q^{k,l} \cdot x_j^{k-1} K^{k,l} \)
\(\alpha_i^{k,l} = \text{softmax}(\tilde{\alpha}_{i,1}^{k,l}, \ldots, \tilde{\alpha}_{i,n}^{k,l}) \)
\(x_i^{k,l} = \sum_{i=1}^{n} \alpha_{i,j}^{k,l} x_j^{k-1} V^{k,l} \)
\(x_i^k = [x_i^{k,1}; \ldots; x_i^{k,L}] \)

the movie was great
What Can Self-attention do?

The ballerina is very excited that she will dance in the show.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.5</th>
<th>0</th>
<th>0</th>
<th>0.1</th>
<th>0.1</th>
<th>0</th>
<th>0.1</th>
<th>0.2</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
</tbody>
</table>

- Attend to nearby related terms
- But just the same to far semantically related terms
Self-attention is the basic building block of an architecture called Transformers.

Many details to get it to work.

Significant improvements for many tasks, starting with machine translation (Vaswani et al. 2017) and later context-dependent pre-trained embeddings (BERT; Devlin et al. 2018).

A detailed technical description (with code): https://www.aclweb.org/anthology/W18-2509/
MT with Transformers

- Input: sentence in source language
- Output: sentence in target language
- Encoder Transformer processes the input
- Decoder Transformer generates the output
- More generally: this defines an encoder-decoder architecture with Transformers
Encoder

- Self-attention is not order-sensitive
- Need to add positional information
- Add time-dependent function to token embeddings (sin and cos)
- Output: a set of token embeddings

[Positional Dimensions figure from Rush 2018]
Encoder

- Use parameterized attention
- Multiple attention heads, each with separate parameters
- This increases the attention flexibility
Decoder

- Can’t attend to the whole output
- Why? It doesn’t exist yet!
- Tokens are generated one-by-one
- Solution: mask tokens that are not predicted yet in the attention
- First: self-attend to the output only
 Second: attend to both input and output

Le → Le gros chien rouge

gros → Le gros chien rouge

chien → Le gros chien rouge

rouge → Le gros chien rouge