
Dependency Parsing

Instructor: Yoav Artzi

CS5740: Natural Language Processing

Slides adapted from Dan Klein, Luke Zettlemoyer, Chris Manning, and Dan Jurafsky, and David Weiss

Overview

• The parsing problem
• Methods
– Transition-based parsing

• Evaluation
• Projectivity

Parse Trees

• Part-of-speech Tagging:
–Word classes

• Parsing:
– From words to phrases to sentences
– Relations between words

• Two views
– Dependency
– Constituency

Dependency Parsing

• Dependency structure shows which
words depend on (modify or are
arguments of) which other words.

The boy put the tortoise on the rug

Constituency (Phrase Structure)
Parsing

• Phrase structure organizes words into
nested constituents

• Linguists can, and do, argue about details
• Lots of ambiguity

new art critics write reviews with computers

PP

NP
NP

N’

NP

VP

S

Dependency Structure
• Syntactic structure consists of:
– Lexical items
– Binary asymmetric relations àdependencies

submitted

Bills were

Brownback

Senator

nsubjpass auxpass prep

nn

immigration
conj

by

cc

and

ports
pobj

prep

on
pobj

Republican

Kansas
pobj

prep

of

appos

Dependencies are
typed with name of
grammatical relation

Dependency Structure
• Syntactic structure consists of:
– Lexical items
– Binary asymmetric relations àdependencies

submitted

Bills

nsubjpass

Head (governor,
superior, regent)

Modifier (dependent,
inferior, subordinate)

Arrow from head to
modifier (but can be

reversed)

Dependency Structure
• Syntactic structure consists of:
– Lexical items
– Binary asymmetric relations àdependencies

submitted

Bills were

Brownback

Senator

nsubjpass auxpass prep

nn

immigration
conj

by

cc

and

ports
pobj

prep

on
pobj

Republican

Kansas
pobj

prep

of

appos

Dependencies
form a tree

Dependency Structure
• Syntactic structure consists of:
– Lexical items
– Binary asymmetric relations àdependencies

submitted

Bills were

Brownback

Senator

nsubjpass auxpass prep

nn

immigration
conj

by

cc

and

ports
pobj

prep

on
pobj

Republican

Kansas
pobj

prep

of

appos

Dependencies
form a tree

Root

Let’s Parse

He said that the boy who was wearing the blue shirt with the white pockets has left the building

John saw Mary

Start with main verb, and
draw dependencies. Don’t
worry about labels. Just try
to get the modifiers right.

Methods for Dependency Parsing
• Dynamic programming

– Eisner (1996): O(n3)
• Graph algorithms

– McDonald et al. (2005): score edges independently using
classifier and use maximum spanning tree

• Constraint satisfaction
– Start with all edges, eliminate based on hard constraints

• “Deterministic parsing”
– Left-to-right, each choice is done with a classifier jumped

boy over

the thelittle

prepnsubj

det amod pobj

fence
det

Making Decisions
What are the sources of information for dependency parsing?
1. Bilexical affinities

– [issues à the] is plausible
2. Dependency distance

– mostly with nearby words
3. Intervening material

– Dependencies rarely span intervening verbs or punctuation
4. Valency of heads

– How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed .

MaltParse (Nivre et al. 2008)
• Greedy transition-based parser
• Each decision: how to attach each word as we

encounter it
– If you are familiar: like shift-reduce parser

• Select each action with a classifier
• The parser has:

– a stack σ, written with the top to the right
• which starts with the ROOT symbol

– a buffer β, written with the top to the left
• which starts with the input sentence

– a set of dependency arcs A
• which starts off empty

– a set of actions

Arc-standard Dependency Parsing
Start: σ = [ROOT], β = w1, …, wn , A = ∅
• Shift σ, wi|β, A à σ|wi, β, A
• Left-Arcr σ|wi, wj|β, A à σ, wj|β, A∪{r(wj,wi)}
• Right-Arcr σ|wi, wj|β, A à σ, wi|β, A∪{r(wi,wj)}
Finish: β = ∅

ROOT Joe likes Marry

Arc-standard Dependency Parsing
Start: σ = [ROOT], β = w1, …, wn , A = ∅
• Shift σ, wi|β, A à σ|wi, β, A
• Left-Arcr σ|wi, wj|β, A à σ, wj|β, A∪{r(wj,wi)}
• Right-Arcr σ|wi, wj|β, A à σ, wi|β, A∪{r(wi,wj)}
Finish: β = ∅

ROOT Joe likes Marry
[ROOT] [Joe, likes, marry] ∅

Shift [ROOT, Joe] [likes, marry] ∅
Left-Arc [ROOT] [likes, marry] {(likes,Joe)} = A1
Shift [ROOT, likes] [marry] A1
Right-Arc [ROOT] [likes] A1 ∪ {(likes,Marry)} = A2
Right-Arc [] [ROOT] A2 ∪ {(ROOT, likes)} = A3
Shift [ROOT] [] A3

Arc-standard Dependency Parsing
Start: σ = [ROOT], β = w1, …, wn , A = ∅
• Shift σ, wi|β, A à σ|wi, β, A
• Left-Arcr σ|wi, wj|β, A à σ, wj|β, A∪{r(wj,wi)}
• Right-Arcr σ|wi, wj|β, A à σ, wi|β, A∪{r(wi,wj)}
Finish: β = ∅

ROOT Joe likes Marry

• Once a word is not on buffer or stack it is cannot
be attached anymore, so we are done with it

• All dependents must be attached before the
parent

Arc-standard Dependency Parsing
Start: σ = [ROOT], β = w1, …, wn , A = ∅
• Shift σ, wi|β, A à σ|wi, β, A
• Left-Arcr σ|wi, wj|β, A à σ, wj|β, A∪{r(wj,wi)}
• Right-Arcr σ|wi, wj|β, A à σ, wi|β, A∪{r(wi,wj)}
Finish: β = ∅

ROOT Happy children like to play with their friends .

Arc-eager Dependency Parsing
Start: σ = [ROOT], β = w1, …, wn , A = ∅
• Left-Arcr σ|wi, wj|β, A à σ, wj|β, A∪{r(wj,wi)}

– Precondition: r’(wk, wi) ∉ A, wi ≠ ROOT
• Right-Arcr σ|wi, wj|β, A à σ|wi|wj, β, A∪{r(wi,wj)}
• Reduce σ|wi, β, A à σ, β, A

– Precondition: r’(wk, wi) ∈ A
• Shift σ, wi|β, A à σ|wi, β, A
Finish: β = ∅

This is the common “arc-eager” variant: a head can
immediately take a right dependent, before its
dependents are found

Arc-eager
1. Left-Arcr σ|wi, wj|β, A è σ, wj|β, A∪{r(wj,wi)}

Precondition: r’(wk, wi) ∉ A, wi ≠ ROOT
2. Right-Arcr σ|wi, wj|β, A è σ|wi|wj, β, A∪{r(wi,wj)}
3. Reduce σ|wi, β, A è σ, β, A

Precondition: r’(wk, wi) ∈ A
4. Shift σ, wi|β, A è σ|wi, β, A

ROOT Happy children like to play with their friends .

Arc-eager

ROOT Happy children like to play with their friends .

[ROOT] [Happy, children, …] ∅
Shift [ROOT, Happy] [children, like, …] ∅
LAamod [ROOT] [children, like, …] {amod(children, happy)} = A1
Shift [ROOT, children] [like, to, …] A1
LAnsubj [ROOT] [like, to, …] A1 ∪ {nsubj(like, children)} = A2
RAroot [ROOT, like] [to, play, …] A2 ∪{root(ROOT, like) = A3
Shift [ROOT, like, to] [play, with, …] A3
LAaux [ROOT, like] [play, with, …] A3∪{aux(play, to) = A4
RAxcomp [ROOT, like, play] [with their, …] A4∪{xcomp(like, play) = A5

1. Left-Arcr σ|wi, wj|β, A è σ, wj|β, A∪{r(wj,wi)}
Precondition: r’(wk, wi) ∉ A, wi ≠ ROOT

2. Right-Arcr σ|wi, wj|β, A è σ|wi|wj, β, A∪{r(wi,wj)}
3. Reduce σ|wi, β, A è σ, β, A

Precondition: r’(wk, wi) ∈ A
4. Shift σ, wi|β, A è σ|wi, β, A

Arc-eager

ROOT Happy children like to play with their friends .
RAxcomp [ROOT, like, play] [with their, …] A4∪{xcomp(like, play) = A5
RAprep [ROOT, like, play, with] [their, friends, …] A5∪{prep(play, with) = A6
Shift [ROOT, like, play, with, their] [friends, .] A6
LAposs [ROOT, like, play, with] [friends, .] A6∪{poss(friends, their) = A7
RApobj [ROOT, like, play, with, friends] [.] A7∪{pobj(with, friends) = A8
Reduce [ROOT, like, play, with] [.] A8
Reduce [ROOT, like, play] [.] A8
Reduce [ROOT, like] [.] A8
RApunc [ROOT, like, .] [] A8∪{punc(like, .) = A9
You terminate as soon as the buffer is empty. Dependencies = A9

1. Left-Arcr σ|wi, wj|β, A è σ, wj|β, A∪{r(wj,wi)}
Precondition: r’(wk, wi) ∉ A, wi ≠ ROOT

2. Right-Arcr σ|wi, wj|β, A è σ|wi|wj, β, A∪{r(wi,wj)}
3. Reduce σ|wi, β, A è σ, β, A

Precondition: r’(wk, wi) ∈ A
4. Shift σ, wi|β, A è σ|wi, β, A

MaltParser (Nivre et al. 2008)
• Selecting the next action:
– Discriminative classifier (SVM, MaxEnt, etc.)
– Untyped choices: 4
– Typed choices: |R| * 2 + 2

• Features: POS tags, word in stack, word in
buffer, etc.

• Greedy à no search
– But can easily do beam search

• Close to state of the art
• Linear time parser à very fast!

Parsing with Neural Networks
Chen and Manning (2014)

• Arc-standard Transitions
– Shift
– Left-Arcr
– Right-Arcr

• Selecting the next actions:
– Untyped choices: 3
– Typed choices: |R| * 2 + 1
– Neural network classifier

• With a few model improvements and very
careful hyper-parameter tuning gives SOTA
results

Parsing with Neural Networks
Chen and Manning (2014)

Hyper-parameters

Slide from David Weiss

Slide from David Weiss

Slide from David Weiss

Slide from David Weiss

Slide from David Weiss

Evaluation

ROOT She saw the video lecture
0 1 2 3 4 5

Gold
1 2 She nsubj
2 0 saw root
3 5 the det
4 5 video nn
5 2 lecture dobj

Parsed
1 2 She nsubj
2 0 saw root
3 4 the det
4 5 video nsubj
5 2 lecture ccomp

Acc = # correct deps
of deps

UAS = 4 / 5 = 80%
LAS = 2 / 5 = 40%

Projectivity
• Dependencies from CFG trees with head rules must

be projective
– Crossing arcs are not allowed

• But: theory allows to account for displaced
constituents à non-projective structures

Who did Bill buy the coffee from yesterday ?

Projectivity

• Arc-eager transition system:
– Can’t handle non-projectivity

• Possible directions:
– Give up!
– Post-processing
– Add new transition types
– Switch to a different algorithm
• Graph-based parsers (e.g., MSTParser)

