CS 5740: Natural Language Processing

Contextualized Representations

Instructor: Yoav Artzi

Overview

- Motivation
- Context-dependent Representations with BERT
- Advanced tokenization for BERT (and elsewhere)
- Cross-modality representations

Motivation

- Word embeddings (e.g., word2vec, GloVe):
 - Learn a vector for each word type
 - Always the same vector
- Problem: each vector likely mixes multiple senses, regardless of how the specific instance of the word is used

Motivation

- Instead of a single vector: learn a different vector for each use of a word type
- Challenge: how do we define the space of uses?
 Isn't it too large?
- Solution: use sentence encoders to create a custom vector for every instance of a word

Several Approaches

- Central Word Prediction Objective (context2vec)
 [Melamud et al. 2016]
- Machine Translation Objective (CoVe) [McMann et al. 2017]
- Bi-directional Language Modeling Objective (ELMo)
 [Peters et al. 2018]
- Bidirectional Encoder Representations from Transformers (BERT) [<u>Devlin et al. 2018</u>]
- Robustly Optimized BERT (RoBERTa) [<u>Liu et al. 2019</u>]

BERT

- Model: multi-layer self-attention (Transformer)
- Input: a sentence or a pair of sentences with a separator and subword representation
- Why do we need positional embedding?

Sub-word Tokenization

- BERT uses Word Piece tokenization
- Related models (e.g., for MT, language modeling, etc) use either Word Piece or Byte Pair Encoding tokenization
- Advantage: no unknown words problem
- Package: https://github.com/huggingface/tokenizers

Byte Pair Encoding (BPE) Tokenization

- 1. Start with every individual byte (basically character) as its own token
- 2. Count bigram token cooccurrences over words (potentially: weight according to corpus frequencies)
- 3. Merge the most frequent pair of adjacent characters to create a new token
- Vocabulary size is controlled by the number of merges
- With ~8000 tokens we get many whole words in English

Word Piece Tokenization

- 1.Initialize with tokens for all characters
- 2. While vocabulary size is below the target size:
 - Build a language model over the corpus (e.g., unigram language model)
 - 2. Merge pieces that lead to highest improvement in language model perplexity
- Need to choose a language model that will make the process tractable
- Often a unigram language model (e.g., SentencePiece library)
- Particularly suitable for machine translation

BERT

• Model: multi-layer self-attention (Transformer)

BERT

- Model: multi-layer self-attention (Transformer)
- BERT Base: 12 layers, 768-dim per word-piece token,
 12 heads. Total parameters = 110M
- BERT Large: 24 layers, 1024-dim per word-piece token, 16 heads. Total parameters = 340M
- RoBERTa: much more data (160GB of data instead of 16GB)

Training BERT

- Two objectives: masked language modeling and next sentence prediction
- Data: BookCorpus + English Wikipedia
- Later development with RoBERTa:
 - Much more data
 - Removed the next sentence prediction objective
 - Dynamic masking

Masked Language Modeling

- Similar to predicting the next word for language modeling, but adapted for non-directional selfattention
- The BERT recipe: mask and predict 15% of the tokens
 - For 80% (of 15%) replace with the input token with [MASK]
 - For 10%, replace with a random token
 - For 10%, keep the same

Next Sentence Prediction

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next

Using BERT

- Use the pre-trained model as the first "layer" of your final model
- Train with fine-tuning using your supervised data
- Fine-tuning recipe: 1-3 epochs, batch size 2-32, learning rate 2e-5 5e-5
 - Large changes to weights in top layers (particularly in last layer to route the right information to [CLS])
 - Smaller changes to weights lower down in the transformer
 - Small learning rate and short fine-tuning schedule mean weights don't change much
 - More complex recipes exist

Sentence Classification with BERT

- CLS token is used to provide classification decision
- Example tasks:
 - Sentiment classification
 - Linguistic acceptability
 - Text categorization

Sentence-pair Classification with BERT

- Feed both sentences, and CLS token used for classification
- Example tasks:
 - Textual entailment
 - Question paraphrase detection
 - Question-answering pair classification
 - Semantic textual similarity
 - Multiple choice question answering

Tagging with BERT

- Can do for a single sentence or a pair
- Tag each word piece
- Example tasks: span-based question answering, name-entity recognition, POS tagging

[figure from Devlin et al. 2018]

Results

- Fine-tuned BERT outperformed previous state of the art on 11 NLP tasks
- Since then was applied to many more tasks with similar results
- The larger models perform better, but even the small BERT performs better than prior methods
- Variants quickly outperformed human performance on several tasks, including span-based question answering — but what does this mean is less clear
- Started an arms race (between industry labs) on bigger and bigger models

Hard to do with BERT

- BERT cannot generate text (at least not in an obvious way)
 - Not an autoregressive model, can do weird things like stick a [MASK] at the end of a string, fill in the mask, and repeat
- Masked language models are intended to be used primarily for "analysis" tasks

What does BERT Learn?

- A lot of recent work studying this problem
- Some very interesting results
- But, it's not completely clear how to interpret them

What does BERT Learn?

- Try to solve different linguistic tasks given each level
- Goal: see what information each new level adds
- Method: try to solve different tasks using mixing weights on levels
- Each task classifier takes a single mixed hidden representation $\mathbf{h}_{i,\tau}$ or a pair of representations

i: token index

K: number of levels

 τ : task

 γ_{τ} : task parameter

 \mathbf{a}_{τ} : mixing parameters

$$\mathbf{s}_{\tau} = \operatorname{softmax}(\mathbf{a}_{\tau})$$

$$\mathbf{h}_{i,\tau} = \gamma_{\tau} \sum_{k=0}^{K} s_{\tau}^{k} \mathbf{h}_{i}^{k}$$

What does BERT Learn?

- Each plot shows a task
- Plots show S_{τ}^{k} weights magnitude in blue, and the number of self-attention levels
- The performance delta when adding this layer is in purple
- Largely: higher level semantic tasks happen in later levels

Where to get BERT?

- The Transformers library: https://github.com/huggingface/transformers
- Provides state-of-the-art implementation of many models, including BERT and RoBERTa
- Including pre-trained models

Vision-language Reasoning

- Goal: pre-trained representations for language and vision, where the input is a sentence and image
- Self-attention in BERT allows attending between two sentences
- How can we extend that to a sentence paired with an image?

Vision-language Reasoning

- Solution: pre-process the image to extract bounding boxes around objects
- Now the image is an unordered list of discrete objects
- Objectives: masked language model + masked region modeling + image-text matching

Vision-language Reasoning

Results

- Similar trend to what we observe with BERT
- State of the art on 13 vision+language benchmarks
- Similar to BERT, there larger is better

Tasks		SOTA	ViLBERT	VLBERT	Unicoder -VL	VisualBERT	LXMERT	UNITER	
								BASE	LARGE
VQA	test-dev	70.63	70.55	70.50	-	70.80	72.42	72.27	73.24
	test-std	70.90	70.92	70.83	-	71.00	72.54	72.46	73.40
VCR	$Q \rightarrow A$	72.60	73.30	74.00	-	71.60	-	75.00	77.30
	$QA \rightarrow R$	75.70	74.60	74.80	-	73.20	-	77.20	80.80
	$Q\rightarrow AR$	55.00	54.80	55.50	-	52.40	-	58.20	62.80
NLVR ²	dev	54.80	-	-	-	67.40	74.90	77.14	78.40
	test-P	53.50	-	-	-	67.00	74.50	77.87	79.50
SNLI-	val	71.56	-	-	-	-	-	78.56	79.28
VE	test	71.16	-	-	-	-	-	78.02	78.98
ZS IR (Flickr)	R@1	-	31.86	-	42.40	-	-	62.34	65.82
	R@5	-	61.12	-	71.80	-	-	85.62	88.88
	R@10	-	72.80	-	81.50	-	-	91.48	93.52
IR (Flickr)	R@1	48.60	58.20	-	68.30	-	-	71.50	73.66
	R@5	77.70	84.90	-	90.30	-	-	91.16	93.06
	R@10	85.20	91.52	-	94.60	-	-	95.20	95.98
IR (COCO)	R@1	38.60	-	-	44.50	-	-	48.42	51.72
	R@5	69.30	-	-	74.40	-	-	76.68	78.41
	R@10	80.40	-	-	84.00	-	-	85.90	86.93
ZS TR (Flickr)	R@1	-	-	-	61.60	-	-	75.10	77.50
	R@5	-	-	-	84.80	-	-	93.70	96.30
	R@10	-	-	-	90.10	-	-	95.50	98.50
TR (Flickr)	R@1	67.90	-	-	82.30	-	-	84.70	88.20
	R@5	90.30	-	-	95.10	-	-	97.10	98.40
	R@10	95.80	-	-	97.80	-	-	99.00	99.00
TR (COCO)	R@1	50.40	-	-	59.60	-	-	63.28	66.60
	R@5	82.20	-	-	85.10	-	-	87.04	89.42
	R@10	90.00	-	-	91.80	-	-	93.08	94.26
Ref- COCO	val	87.51		-	-	-	-	91.64	91.84
	testA	89.02	-	-	-	-	-	92.26	92.65
	testB	87.05	-	-	-	-	-	90.46	91.19
	val ^d	77.48	-	-	-	-	-	81.24	81.41
	$testA^d$	83.37	-	-	-	-	-	86.48	87.04
	$test\mathbf{B}^d$	70.32	-	-	-	-	-	73.94	74.17
Ref- COCO+	val	75.38	-	78.44	-	-	-	82.84	84.04
	testA	80.04	-	81.30	-	-	-	85.70	85.87
	testB	69.30	-	71.18	-	-	-	78.11	78.89
	val^d	68.19	72.34	71.84	-	-	-	74.72	74.94
	$testA^d$	75.97	78.52	77.59	-	-	-	80.65	81.37
	$testB^d$	57.52	62.61	60.57	_	_	-	65.15	65.35
	val	81.76	-	-				86.52	87.85
Ref- COCOg	test	81.75	_	_	_	_	-	86.52	87.73
	val ^d	68.22						74.31	74.86
	test ^d	69.46	-	-	-	-	-	74.51	75.77
	iesi	09.40			-			74.31	15.11