CS5740: Natural Language Processing

Recurrent Neural Networks

Adapted from Yoav Goldberg’s Book and slides by Sasha Rush
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Text Classification

Consider the example:
— Goal: classity sentiment

You should not see this movie.
Model: bag of words
How well will the classitier work?
— Similar unigrams and bigrams

Generally: need to maintain a state to
capture distant influences



Finite State Machines

« Simple, classical way of representing
state

» Current state: saves necessary past
information

» Example: email address parsing

abc a,b,c a,b,c,.

oW e




Deterministic Finite State Machines

S — states

Y — vocabulary

So € S — start state

R:S XX —» S —transition function

What does it do”
— Maps input wy, ..., w,, to states sy, ..., s,,
— Foralli e{1,...,n}
S; = R(Sj—1, W;)
Can we use it for POS tagging”? Language
modeling?



Types of State Machines

* Acceptor
— Compute final state s,, and make a decision
based on it: y = 0(sy,)
* Transducers
— Apply function y; = 0(s;) to produce output
for each intermediate state
* Encoders

— Compute final state s,,, and use it in another
model



Recurrent Neural Networks

 Motivation:
— Neural network model, but with state
— How can we borrow ideas from FSMs?

« RNNs are FSMs ...

— ... with a twist
— No longer finite in the same sense




RNN

» S = R%id - hidden state space

» ¥ = R%n - jnput state space

* Sy €S - Initial state vector

e R : R%nxR%*id — R%id - transition
function

» Simple definition of R;
Reiman (S, x) = tanh([x, s]W + b)

* Notation: vectors and matrices are bold Elman (1990)



RNN

Map from dense sequence to dense
representation
— X1, ey Xy = 81, e+, Sy
— Foralli e {1, ...,n}
s;i = R(s;_1,x;)
— R Is parameterized, and parameters are shared
between all steps

— Example:
S; = R(s3,x4) = = R(R(R(R(8¢,x1),X2),X3),X4)



RNNs

Hidden states s; can be used in different

ways

Similar to finite state machines

— Acceptor

— Transducer

— Encoder

Qutput function maps vectors to symbols:
0: R%hid — R%out

For example: single layer + softmax
O(s;) = softmax(s;W + b)



Graphical Representation

Recursive Representation Unrolled Representation
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Graphical Representation

_____________________________________________




Training

RNNSs are trained with SGD and Backprop
Define loss over outputs

— Depends on supervision and task
Backpropagation through time (BPTT)

— Use unrolled representation

— Run forward propagation

— Run backward propagation

— Update all weights
Weights are shared between time steps

— Sum the contributions of each time step to the gradient
Inefficient

— Batch helps, common but tricky to implement with variable-size
models (good helper methods in PyTorch, non-issue with auto
batching in DyNet)



RNN: Acceptor Architecture

* Only care about the output from the last hidden
state

* Train: supervised, loss on prediction
« Example:

loss
— Text classification S
/" predict &
‘. calcloss
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Language Modeling

Input: X = xq, ..., Xy,
Goal: compute p(X)
Bi-gram decomposition:

p(X) = Hp(xi | Xi—1)

With RNNs, can do non-Markovian models:

n
p(X) = Hp(xi | X1, s Xi—1)
=1



RNN: Transducer Architecture

* Predict output for every time step

loss
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Language Modeling

Input: X = xq, ..., Xy,
Goal: compute p(X)
Model.

p(X) — Hp(xl | X1, eees Xi—1)

pCx; | X1, e, 25 1) = 0(sy) = O(R(sy, xi-1))
O(s;) = softmax(s;W + b)
Predict next token y; as we go:
y; = argmax0(s;)



RNN: Transducer Architecture

* Predict output for every time step

« Examples:
— Language modeling
— POS tagging
— NER
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RNN: Transducer Architecture

X =X1,...,X,

s; =R(s;j_1,%x;),t=1,...,n
O(s;) =softmax(s; W + b)

y; =arg max O(s;)

_________



RNN: Encoder Architecture

« Similar to acceptor

« Difference: last state is used as input to
another model and not for prediction

0(s;) = ;2 Yn = Sy
* Example:
— Sentence embedding

__________________

_________________________________________



Bidirectional RNNs

 RNN decisions are based on historical data only
— How can we account for future input?

« \When is it relevant? Feasible?

Ythe Ybrown Yfox Yjumped Y«
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Bidirectional RNNs

 RNN decisions are based on historical data only
— How can we account for future input?

 When is it relevant? Feasible?
« When all the input is available. Not for real-time input.

+  Probabilistic model, for example for language modeling:
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Deep RNNs

« Can also make RNNs deeper (vertically) to

iIncrease model capacity

|||||
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RNN: Generator

Special case of the transducer architecture
Generation conditioned on s,
Probabilistic model:

n
p(X|sg) = np(xi | X1, -, Xi—1,Sp)
i=1

black fox jumped

<s>



RNN: Generator

» Stop when generating the STOP token

» During learning (usually): force predicting
the annotated token and compute loss

sj =R(sj—1, E(tj-1)) .
O(s;) =softmax(s,W +b) =]

’Ej = arg max 0(s,) e

______




Example: Caption Generation

« Given:image I

« Goal: generate caption
« Setsy=CNN()
Model:

n
p(X11)= Hp(xi | x4, oo, Xi_1, 1)
i=1

"baseball player is throwing ball ‘woman is holding bunch of
in game." bananas.

Exam p | S from Karpathy "a young by is holding a 7 "a cat is sitting on a couch with a "a woman holding a teddy bear in
an d Fe | _ Fel 20 1 5 baseball bat." remote control.” front of @ mirror.”



Seqguence-to-seqguence

Connect encoder and
generator
Many alternatives:

— Set generator s¢ to
encoder output s3

— Concatenate s;, with
each step input
during generation

Examples:

— Machine translation
— Chatbots

— Dialog systems
Can also generate

other sequences — not
only natural language!

the

_____

_____

black

_____

E [conditioning]

conditioning

fox

_____

_____

____________________

E[sequence] E[</8>]

sequence < /s>



Seqguence-to-sSequence

X =X1,...,Xp,
E E -
:RE(S,L_]_,XZ)7/L — ]_’ « o ,n

c =Og(s;)

sy =Rp(si_1, [E(tj-1);c])
OD(sf) =softmax(s DW + b)
t; :argmaXOD(sf)

-------------------------------------------------




Seguence-to-Seguence
Graph

raining
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Long-range Interactions

* Promise: Learn long-range interactions of
anguage from data

» Example:

You should not see this movie.

» Sometimes: requires "remembering” early
state
— Key signal here is at s{, but gradient is at s,



Long-term Gradients

Gradient go through (many) multiplications
OK at end layers = close to the loss

But: issue with early layers

For example, derivative of tanh

—tanhx = 1 — tanh?x
dx

— Large activation - gradient disappears (vanish)

In other activation functions, values can
become larger and larger (explode)



Exploding Gradients

« Common when there is no
saturation in activation

(e.g., Rel.u) and we get . ReLU
exponential blowup | B(z) =maz(0, 2)

* Result: reasonable short-
term gradient, but bad
long-term ones

« Common heuristic:

— Gradient clipping:

bounding all gradients by
maximum value



Vanishing Gradients

» Occurs when multiplying small values
— For example: when tanh saturates

« Mainly affects long-term gradients
» Solving this is more complex



Long Short-term Memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hochreiter and Schmidhuber (1997)


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM vs. Elman RNN
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell State

f, = o(W/hy_1, %] + b/)
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Image by Tim Rocktaschel



Attention

* |n seq-to-seg models, a single vector
connects encoding and decoding
— Any concern?

— All the input string information must encoded into
a fixed-length vector

— The decoder must recover all this information
from a fixed-length vector
« Attention relaxes the assumption that a
single vector must be used to encode the
iInput sentence regardless of length



Attention

* Encode input sentence as a sequence of
vectors

* At each step: pick what vector to use

o But: discrete choice Is not differentiable
— Make the choice soft



Attention

the black fox jumped </s>
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Attention
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Attention

« Many variants of attention function

— Dot product (previous slide)
— MLP
— Bi-linear transformation

» Various ways to combine context vector
iINto decoder computation

« See Luong et al. 2015



https://arxiv.org/abs/1508.04025

