CS5740: Natural Language Processing

Recurrent Neural Networks

Adapted from Yoav Goldberg’s Book and slides by Sasha Rush

Overview

-INite state models

Recurrent neural networks (RNNs)
Training RNNs

RNN Models

Long short-term memory (LSTM)
Attention

Text Classification

Consider the example:
— Goal: classity sentiment

You should not see this movie.
Model: bag of words
How well will the classitier work?
— Similar unigrams and bigrams

Generally: need to maintain a state to
capture distant influences

Finite State Machines

« Simple, classical way of representing
state

» Current state: saves necessary past
information

» Example: email address parsing

abc a,b,c a,b,c,.

oW e

Deterministic Finite State Machines

S — states

Y — vocabulary

So € S — start state

R:S XX —» S —transition function

What does it do”
— Maps input wy, ..., w,, to states sy, ..., s,,
— Foralli e{1,...,n}
S; = R(Sj—1, W;)
Can we use it for POS tagging”? Language
modeling?

Types of State Machines

* Acceptor
— Compute final state s,, and make a decision
based on it: y = 0(sy,)
* Transducers
— Apply function y; = 0(s;) to produce output
for each intermediate state
* Encoders

— Compute final state s,,, and use it in another
model

Recurrent Neural Networks

 Motivation:
— Neural network model, but with state
— How can we borrow ideas from FSMs?

« RNNs are FSMs ...

— ... with a twist
— No longer finite in the same sense

RNN

» S = R%id - hidden state space

» ¥ = R%n - jnput state space

* Sy €S - Initial state vector

e R : R%nxR%*id — R%id - transition
function

» Simple definition of R;
Reiman (S, x) = tanh([x, s]W + b)

* Notation: vectors and matrices are bold Elman (1990)

RNN

Map from dense sequence to dense
representation
— X1, ey Xy = 81, e+, Sy
— Foralli e {1, ...,n}
s;i = R(s;_1,x;)
— R Is parameterized, and parameters are shared
between all steps

— Example:
S; = R(s3,x4) = = R(R(R(R(8¢,x1),X2),X3),X4)

RNNs

Hidden states s; can be used in different

ways

Similar to finite state machines

— Acceptor

— Transducer

— Encoder

Qutput function maps vectors to symbols:
0: R%hid — R%out

For example: single layer + softmax
O(s;) = softmax(s;W + b)

Graphical Representation

Recursive Representation Unrolled Representation

Yi
A
'Kjx
- N
Si—1 —>: R’O — Sj R,0 ﬁ R,0 H R,0 %» R,0 % R,0 %»
I ___
I e
y i

Graphical Representation

Training

RNNSs are trained with SGD and Backprop
Define loss over outputs

— Depends on supervision and task
Backpropagation through time (BPTT)

— Use unrolled representation

— Run forward propagation

— Run backward propagation

— Update all weights
Weights are shared between time steps

— Sum the contributions of each time step to the gradient
Inefficient

— Batch helps, common but tricky to implement with variable-size
models (good helper methods in PyTorch, non-issue with auto
batching in DyNet)

RNN: Acceptor Architecture

* Only care about the output from the last hidden
state

* Train: supervised, loss on prediction
« Example:

loss
— Text classification S
/" predict &
‘. calcloss
|Y5
S0 RO 1. RO 2. RO —2.J RO %0 RO |

Language Modeling

Input: X = xq, ..., Xy,
Goal: compute p(X)
Bi-gram decomposition:

p(X) = Hp(xi | Xi—1)

With RNNs, can do non-Markovian models:

n
p(X) = Hp(xi | X1, s Xi—1)
=1

RNN: Transducer Architecture

* Predict output for every time step

loss

——

/ predict & predict & , predict & . predict & predict &
\ } | \ J 1 /
‘. calcloss .+ calcloss . calcloss . calcloss . -calcloss .

1 | I I
So ! , S1 ! , Sz . S3 ! , Sg

Language Modeling

Input: X = xq, ..., Xy,
Goal: compute p(X)
Model.

p(X) — Hp(xl | X1, eees Xi—1)

pCx; | X1, e, 25 1) = 0(sy) = O(R(sy, xi-1))
O(s;) = softmax(s;W + b)
Predict next token y; as we go:
y; = argmax0(s;)

RNN: Transducer Architecture

* Predict output for every time step

« Examples:
— Language modeling
— POS tagging
— NER

loss

——

/ predict & predict & , predict & . predict & predict &
\ } | \ J 1 /
‘. calcloss .+ calcloss . calcloss . calcloss . -calcloss .

1 | I I
So ! , S1 ! , Sz . S3 ! , Sg

RNN: Transducer Architecture

X =X1,...,X,

s; =R(s;j_1,%x;),t=1,...,n
O(s;) =softmax(s; W + b)

y; =arg max O(s;)

RNN: Encoder Architecture

« Similar to acceptor

« Difference: last state is used as input to
another model and not for prediction

0(s;) = ;2 Yn = Sy
* Example:
— Sentence embedding

Bidirectional RNNs

 RNN decisions are based on historical data only
— How can we account for future input?

« \When is it relevant? Feasible?

Ythe Ybrown Yfox Yjumped Y«

concat concat concat concat concat

ys ya ys Y5 yi
s 0 sel v S S 1
Rb,ob - Rb,ob — Rb,ob - Rb,ob - Rb,ob
L L e e e - - :.___‘:____ N, L T===-
yi ys ys yh Y5
S S £ T T T £ T T T S f
So SH So 1 ' |83 Sy 1 Ss
R/,0/ —|— R/,0/ —|-—= R/,0f —|— Rf.Of —|— Rf.Of —|——
Lmmmme o2 Lmmmme 2 . Lmmmme o2 Lo e

Bidirectional RNNs

 RNN decisions are based on historical data only
— How can we account for future input?

 When is it relevant? Feasible?
« When all the input is available. Not for real-time input.

+ Probabilistic model, for example for language modeling:

n
J.L P9
1=
Ythe Ybrown Yfox Yjumped Y
concat concat concat concat concat
RN B R IO L A R IO L
yi ys s yh yh
£ CTTTTTTT £ T £ -ttt f Tttt £ T f
S S7 S S Sy S
° o R/,O0F —| 2 RS,OF —| 2 RA,OF |2 RI,OF — |2 RA,OF —|—2
_____ L.) -
 Xthe * Xbrown Xfox Xjumped X

Deep RNNs

« Can also make RNNs deeper (vertically) to

iIncrease model capacity

|||||

|||||

RNN: Generator

Special case of the transducer architecture
Generation conditioned on s,
Probabilistic model:

n
p(X|sg) = np(xi | X1, -, Xi—1,Sp)
i=1

black fox jumped

<s>

RNN: Generator

» Stop when generating the STOP token

» During learning (usually): force predicting
the annotated token and compute loss

sj =R(sj—1, E(tj-1)) .
O(s;) =softmax(s,W +b) =]

’Ej = arg max 0(s,) e

Example: Caption Generation

« Given:image I

« Goal: generate caption
« Setsy=CNN()
Model:

n
p(X11)= Hp(xi | x4, oo, Xi_1, 1)
i=1

"baseball player is throwing ball ‘woman is holding bunch of
in game." bananas.

Exam p | S from Karpathy "a young by is holding a 7 "a cat is sitting on a couch with a "a woman holding a teddy bear in
an d Fe | _ Fel 20 1 5 baseball bat." remote control.” front of @ mirror.”

Seqguence-to-seqguence

Connect encoder and
generator
Many alternatives:

— Set generator s¢ to
encoder output s3

— Concatenate s;, with
each step input
during generation

Examples:

— Machine translation
— Chatbots

— Dialog systems
Can also generate

other sequences — not
only natural language!

the

black

E [conditioning]

conditioning

fox

E[sequence] E[</8>]

sequence < /s>

Seqguence-to-sSequence

X =X1,...,Xp,
E E -
:RE(S,L_]_,XZ)7/L —]_’ « o ,n

c =Og(s;)

sy =Rp(si_1, [E(tj-1);c])
OD(sf) =softmax(s DW + b)
t; :argmaXOD(sf)

Seguence-to-Seguence
Graph

raining

loss

/

sum

=4

—
//

predic
calD
los

— %=

predict and predict and predict and t and predict and
calculate calculate calculate late calculate
loss loss loss ss_ loss
TH T 1Y) t3 T ty ts
s —_ o P— K - - s% F—_— od e
0 Rp, Op || Rp, Op |2~ Rp, Op | Rp,Op 4~/ Rp, Op |
LTKJ . T‘J . T - : T‘J . ;
<8> t1 t t3 t4

Long-range Interactions

* Promise: Learn long-range interactions of
anguage from data

» Example:

You should not see this movie.

» Sometimes: requires "remembering” early
state
— Key signal here is at s{, but gradient is at s,

Long-term Gradients

Gradient go through (many) multiplications
OK at end layers = close to the loss

But: issue with early layers

For example, derivative of tanh

—tanhx = 1 — tanh?x
dx

— Large activation - gradient disappears (vanish)

In other activation functions, values can
become larger and larger (explode)

Exploding Gradients

« Common when there is no
saturation in activation

(e.g., Rel.u) and we get . ReLU
exponential blowup | B(z) =maz(0, 2)

* Result: reasonable short-
term gradient, but bad
long-term ones

« Common heuristic:

— Gradient clipping:

bounding all gradients by
maximum value

Vanishing Gradients

» Occurs when multiplying small values
— For example: when tanh saturates

« Mainly affects long-term gradients
» Solving this is more complex

Long Short-term Memory (LSTM)

t ? t
éa N N N
—>® @ - > >
A [4 A
o] (o] [&m] (o]
\l T /_'\I e

%)) &)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Hochreiter and Schmidhuber (1997)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM vs. Elman RNN
® ® ®

A
s N\ N ™
— —O—— > -
@D
A [A
] (0]
—> > -

4 N N R
—» (—
A A
) J J

&) © &)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell State

f, = o(W/hy_1, %] + b/)
i, = o(Wih;_1,x:] + b/)
=f; ®ci1 +i; © tanh(W°h;_1,x;] + b®)
o(W°h;_1,x¢] + b?)

s matmu1<E+ ;:1@ h; = o, © tanh(cy)
) @)

a
~
|

LS
I

Image by Tim Rocktaschel

Attention

* |n seq-to-seg models, a single vector
connects encoding and decoding
— Any concern?

— All the input string information must encoded into
a fixed-length vector

— The decoder must recover all this information
from a fixed-length vector
« Attention relaxes the assumption that a
single vector must be used to encode the
iInput sentence regardless of length

Attention

* Encode input sentence as a sequence of
vectors

* At each step: pick what vector to use

o But: discrete choice Is not differentiable
— Make the choice soft

Attention

the black fox jumped </s>

lg
g
S

|
l&
)
)
Q
v}

|

)
)
S
Jﬁ
g
s

\
§°
S

g @
w
(<
£ @

E[tl)e] E[fox] E[]umped]

P
e A
v <
~

—>

Y
X
.
3
~
)
Ny
—

attend

= BIE < BIE < > BIE > BIE > BIE
E[<x>] E[a] E[tonditioning] E[sequenre] E[</s>]

<s5> a conditioning sequence </s>

Attention

E -
— E
c; =Og(s;’)
~J D =
OZ,L _Sj—l ° C’L
j _ —7 ~J
attong | @ =softmax(as, ..., &)
n
. _E : J&.
CJ — ozicz
- =1

S? ZR(Sf_l, [E(Ej_1)3 Cj])
OD(sf) :softmax(sfw + b)
t

i =argmax Op (S j?) o ndtiing e o

Attention

« Many variants of attention function

— Dot product (previous slide)
— MLP
— Bi-linear transformation

» Various ways to combine context vector
iINto decoder computation

« See Luong et al. 2015

https://arxiv.org/abs/1508.04025

