CS5740: Natural Language Processing

Lexical Semantics

Instructor: Yoav Artzi

Slides adapted from Dan Jurafsky, Chris Manning, Slav Petrov, Dipanjan Das, and David Weiss

Overview

- Word sense disambiguation (WSD)
- Wordnet
- Semantic role labeling (SRL)
- Continuous representations

Lemma and Wordform

- A lemma (or citation form)
- Basic part of the word, same stem, rough semantics
- A wordform
- The "inflected" word as it appears in text

Wordform	Lemma
banks	bank
sung	sing
duermes	dormir

Word Senses

- One lemma can have many meanings:

Sense 1: •...a bank ${ }_{1}$ can hold the investments in a custodial account...

- "...as agriculture burgeons on the east Sense 2: bank ${ }_{2}$ the river will shrink even more"
- Sense (or word sense)
- A discrete representation of an aspect of a word's meaning.
- The lemma bank here has two senses

Homonymy

Homonyms: words that share a form but have unrelated, distinct meanings:
bank $_{1}$: financial institution, bank $_{2}$: sloping land bat $_{1}$: club for hitting a ball, bat ${ }_{2}$: nocturnal flying mammal

1. Homographs (bank/bank, bat/bat)
2. Homophones:
3. Write and right
4. Piece and peace

Homonymy in NLP

- Information retrieval
- "bat care"
- Machine Translation
- bat: murciélago (animal) or bate (for baseball)
- Text-to-Speech
- bass (stringed instrument) vs. bass (fish)

Quick Test for Multi Sense Words

- Zeugma
- When a word applies to two others in different senses

Which flights serve breakfast? Does Lufthansa serve Philadelphia? Does Lufthansa serve breakfast and San Jose?

- The conjunction sounds "weird"
- So we have two senses for serve

Synonyms

- Word that have the same meaning in some or all contexts.
- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- Water / $\mathrm{H}_{2} \mathrm{O}$
- Two words are synonyms if ...
- ... they can be substituted for each other
- Very few (if any) examples of perfect synonymy
- Often have different notions of politeness, slang, etc.

Synonyms

- Perfect synonymy is rare
- Consider the words big and large
- Are they synonyms?
- How big is that plane?
- Would I be flying on a large or small plane?
- How about here:
- Miss Nelson became a kind of big sister to Benjamin.
- Miss Nelson became a kind of large sister to Benjamin.
- Why?
- big has a sense that means being older, or grown up
- large lacks this sense
- Synonymous relations are defined between senses

Antonyms

- Senses that are opposites with respect to one feature of meaning
- Otherwise, they are very similar!
dark short fast rise hot up in
light long slow fall cold down out
- Antonyms can
- Define a binary opposition: in/out
- Be at the opposite ends of a scale: fast/slow
- Be reversives: rise/fall
- Very tricky to handle with some representations - remember for later!

Hyponymy and Hypernymy

- One sense is a hyponym/subordinate of another if the first sense is more specific, denoting a subclass of the other
- car is a hyponym of vehicle
- mango is a hyponym of fruit
- Conversely hypernym/superordinate ("hyper is super")
- vehicle is a hypernym of car
- fruit is a hypernym of mango
- Usually transitive
- (A hypo B and B hypo C entails A hypo C)

Superordinate/hyper	vehicle	fruit	furniture
Subordinate/hyponym	car	mango	chair

WordNet

- A hierarchically organized lexical database
- On-line thesaurus + aspects of a dictionary
- Word senses and sense relations
- Some other languages available (Arabic, Finnish, German, Portuguese...)

Category	Unique Strings
Noun	117,798
Verb	11,529
Adjective	22,479
Adverb	4,481

WordNet

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: bass Search WordNet

Display Options: (Select option to change) $\hat{\boldsymbol{v}}$ Change
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) bass (the lowest part of the musical range)
- S: (n) bass, bass part (the lowest part in polyphonic music)
- S: (n) bass, basso (an adult male singer with the lowest voice)
- $\underline{S:}$ (n) sea bass, bass (the lean flesh of a saltwater fish of the family Serranidae)
- S: (n) freshwater bass, bass (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- S: (n) bass, bass voice, basso (the lowest adult male singing voice)
- \underline{S} : (n) bass (the member with the lowest range of a family of musical instruments)
- S: (n) bass (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Adjective

- S: (adj) bass, deep (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

WordNet

- $\underline{\mathrm{S}}$: (n) bass, basso (an adult male singer with the lowest voice)
- direct hypernym / inherited hypernym / sister term
- \underline{s} : (n) singer, vocalist, vocalizer, vocaliser (a person who sings)
- $\underline{\text { S: }}(\mathrm{n})$ musician, instrumentalist, player (someone who plays a musical instrument (as a profession))
- S: (n) performer, performing artist (an entertainer who performs a dramatic or musical work for an audience)
- S: (n) entertainer (a person who tries to please or amuse)
- $\underline{\text { S: }}(\mathrm{n})$ person, individual, someone, somebody, mortal, soul (a human being) "there was too much for one person to do"
- $\underline{\text { S: }}(\mathrm{n}) \underline{\text { organism, }}$ being (a living thing that has (or can develop) the ability to act or function independently)
- $\underline{\mathrm{S}}(\mathrm{n}) \underline{\mathrm{S} v i n g}$ thing, animate thing (a living (or once living) entity)
- S: (n) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
- S: (n) object, physical object (a tangible and visible entity; an entity that can cast a shadow) "it was full of rackets, balls and other objects"
- $\underline{\mathrm{S}}$: n$)$ physical entity (an entity that has physical existence)
 distinct existence (living or nonliving))

Senses and Synsets in WordNet

- Each word in WordNet has at least one sense
- Each sense has a gloss (textual description)
- The synset (synonym set), the set of near-synonyms, is a set of senses with a shared gloss
- Example: chump as a noun with the gloss:
"a person who is gullible and easy to take advantage of"
- This sense of "chump" is shared with 9 words: chump ${ }^{1}$, fool ${ }^{2}$, gull ${ }^{1}$, mark ${ }^{9}$, patsy ${ }^{1}$, fall guy ${ }^{1}$, sucker ${ }^{1}$, soft touch ${ }^{1}$, mug ${ }^{2}$
- All these senses have the same gloss \rightarrow they form a synset

Wロorowet Nountions

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	breakfast $^{1} \rightarrow$ meal 1
Hyponym	Subordinate	From concepts to subtypes	meal $^{1} \rightarrow$ lunch 1
Member Meronym	Has-Member	From groups to their members	faculty $^{2} \rightarrow$ professor 1
Has-Instance		From concepts to instances of the concept	composer $^{1} \rightarrow$ Bach 1
Instance		From instances to their concepts	Austen $^{1} \rightarrow$ author 1
Member Holonym	Member-Of	From members to their groups	copilot $^{1} \rightarrow$ crew 1
Part Meronym	Has-Part	From wholes to parts	table $^{2} \rightarrow$ leg 3
Part Holonym	Part-Of	From parts to wholes	course $^{7} \rightarrow$ meal 1
Antonym		Opposites	leader $^{1} \rightarrow$ follower 1

WordNet 3.0

- Where it is:
- http://wordnetweb.princeton.edu/perl/webwn
- Libraries
- Python:
- NLTK
- Java:
- JWNL, extJWNL
- And more:
- https://wordnet.princeton.edu/wordnet/relatedprojects/

Word Sense Disambiguation

I play bass in a Jazz band

musical_instrument

She was grilling a bass on the stove top
freshwater_fish

Supervised WSD

- Given: a lexicon (e.g., WordNet) and a word in a sentence
- Goal: classify the sense of the word
- Linear model:

Feature function looking at the sense, word, and context

Supervised WSD

- Given: a lexicon (e.g., WordNet) and a word in a sentence
- Goal: classify the sense of the word
- Linear model:
$p($ sense \mid word, context $)=\frac{e^{\theta \cdot \phi(\text { sense, word,context })}}{\sum_{s^{\prime}} e^{\theta \cdot \phi\left(s^{\prime}, \text { word }, \text { context }\right)}}$

Summing over all senses for the word (e.g., from WordNet)

Unsupervised WSD

- Goal: induce the senses of each word and classify in context

1. For each word in context, compute some features
2. Cluster each instance using a clustering algorithm
3. Cluster labels are word senses

More reading: Section 20.10 of J\&M

Semantic Roles

- Some word senses (a.k.a. predicates) represent events
- Events have participants that have specific roles (as arguments)
- Predicate-argument structure at the type level can be stored in a lexicon

Sematic Roles

- PropBank: a semantic role lexicon

Sematic Roles

- PropBank: a semantic role lexicon

run. 01 (operate)
ARG0 (operator)
ARG1 (machine/operation)
ARG2 (employer)
ARG3 (co-worker)
ARG4 (instrument)

```
run. }02\mathrm{ (walk quickly) ARGO (runner) ARG1 (course/race) ARG2 (opponent)
```

Also: FrameNet, an alternative role lexicon

Semantic Role Labeling

- Task: given a sentence, disambiguate predicate frames and annotate semantic roles

Mr. Stromach wants to resume a more influential role in running the company.
ARGO
II. Role labeling
run. 01
I. Frame identification

Role Identification

- Classification models similar to WSD

Mr. Stromach wants to resume a more influential role in running the company.

run. 01
I. Frame identification

Role Labeling

Sentence spans:
Potential roles:

Best matching between spans and roles

Score can come from any classifier (linear, SVM, NN)

SRL

- http://cogcomp.org/page/demo view/srl
- Example: The challenges facing Iraqi forces in Mosul include narrow streets, suicide bombers and small drones that the terror group has used to target soldiers.

http://cogcomp.org/page/demo view/srl

Word Similarity

- Task: given two words, predict how similar they are

The Distributional Hypothesis:

Word Similarity

A bottle of Tesgüino is on the table. Everybody likes tesgüino.
 Tesgüino makes you drunk.
 We make tesgüino out of corn.

- Occurs before drunk
- Occurs after bottle
- Is the direct object of likes

Similar to
beer, wine, whiskey, ...

Word Similarity

- Given a vocabulary of n words
- Represent a word w as:

$$
\vec{w}=\left(f_{1}, f_{2}, f_{3}, \ldots, f_{n}\right)
$$

Binary (or count) features indicating the presence of the $i^{\text {th }}$ word in the vocabulary in the word's context

- For example:

$$
\text { Tsegüuino }=(1,1,0, \ldots)
$$

Word Similarity

$$
\begin{gathered}
\text { Tsegüino }=(1,1,0, \ldots) \\
\overrightarrow{\text { beer }}=(0,1,0, \ldots)
\end{gathered}
$$

- Similarity can be measured using vector distance metrics
- For example, cosine similarity:

$$
\operatorname{similarity}(w, u)=\frac{w \cdot u}{\|w\|\|u\|}=\frac{\sum_{i=1}^{n} w_{i} u_{i}}{\sqrt{\sum_{i=1}^{n} w_{i}^{2}} \sqrt{\sum_{i=1}^{n} u_{i}^{2}}}
$$

which gives values between -1 (completely different), 0 (orthogonal), and 1 (the same)

Vector-space Models

- Words represented by vectors
- In contrast to the discrete class representation of word senses
- Common methods (and packages): Word2Vec, GloVe

Word2Vec

- Method (and open-source package) for learning word vectors from raw text
- Widely used across academia/industry
- Another common package: GloVe
- Goal: good word embeddings
- Embeddings are vectors in a low dimensional space
- Similar words should be close to one another
- Two models:
- Skip-gram (today)
- CBOW (further reading: Mikolov et al. 2013)

The Skip-Gram Model

- Given: Corpus D of pairs (w, c) where w is a word and c is context
- Context may be a single neighboring word (in window of size k)
- Later: different definition
- Consider the parameterized probability

$$
p(c \mid w ; \theta)
$$

- Goal: maximize the corpus probability

$$
\arg \max _{\theta} \prod p(c \mid w ; \theta)
$$

$$
(w, c) \in D
$$

- The important thing: how we parametrize the probability distribution

The Skip-Gram Model

- Goal: maximize the corpus probability

$$
\arg \max _{\theta} \prod_{(w, c) \in D} p(c \mid w ; \theta)
$$

where:

$$
p(c \mid w ; \theta)=\frac{e^{v_{c} \cdot v_{w}}}{\sum_{c^{\prime} \in C} e^{v_{c^{\prime}} \cdot v_{w}}}
$$

if d is the dimensionality of the vectors, we have $d \times|V|+d \times|C|$ parameters

The Skip-Gram Model

- Goal: maximize the corpus probability

$$
\arg \max _{\theta} \prod_{(w, c) \in D} p(c \mid w ; \theta)
$$

- The log of the objective is:

$$
\arg \max _{\theta} \sum_{(w, c) \in D}\left(\log e^{v_{c} \cdot v_{w}}-\log \sum_{c^{\prime}} e^{v_{c^{\prime}} \cdot v_{w}}\right)
$$

- Not tractable in practice
- Sum over all context - intractable
- Approximated via negative sampling

Negative Sampling for Skip-Gram

- Efficient way of deriving word embeddings
- Consider a word-context pair (w, c)
- Let the probability that this pair was observed:

$$
p(D=1 \mid w, c)
$$

- The probability that it was not observed is:

$$
1-p(D=1 \mid w, c)
$$

Negative Sampling

- Parameterization:

$$
p(D=1 \mid w, c)=\frac{1}{1+e^{-v_{c} \cdot v_{w}}}
$$

- New learning objective:
$\arg \max _{\theta} \prod_{(w, c) \in D} p(D=1 \mid w, c) \prod_{(w, c) \in D^{\prime}} p(D=0 \mid w, c)$
- Need to get D^{\prime}

Negative Sampling

- For a given k, the size of D^{\prime} is k-times bigger than D
- Each context c is a word
- For each observed word-context pair, k samples are generated based on unigram distribution

Negative Sampling

- New learning objective:
$\arg \max _{\theta} \prod_{(w, c) \in D} p(D=1 \mid w, c) \prod_{(w, c) \in D^{\prime}} p(D=0 \mid w, c)$
- Original learning objective:

$$
\arg \max _{\theta} \prod_{(w, c) \in D} p(c \mid w ; \theta)
$$

- How does the new objective approximate the original one?

The Skip-Gram Model

- Optimized for word-context pairs
- To get word embedding, take the vectors of the words v_{w}
- But why does it work?
- Intuitively: words that share many contexts will be similar
- Formal:

I think you should be a little more specific, here in Step 2

- Neural Word Embedding as Implicit Matrix Factorization / Levy and Goldberg 2014
- A Latent Variable Model Approach to PMIbased Word Embeddings / Arora et al. 2016

Word Galaxy

- Word Galaxy
- http://anthonygarvan.github.io/wordgalaxy/
- Embeddings for word substitution
- http://ghostweather.com/files/word2vecpride/

Structured Contexts

Scientists from Australia discover with a telescope a...

Skip-Gram context with $\mathrm{n}=2$

- Just looking at neighboring words, often doesn't capture arguments and modifiers
- Maybe just a bigger window?
- Can we use anything except adjacency to get context?

Structured Contexts

Scientists from Australia discover with a telescope a...

Scientists from Australia discover with a telescope a...

Structured Context

Target Word	BoW5	BoW2	DEPS
batman	nightwing aquaman catwoman superman manhunter	superman superboy aquaman catwoman batgirl	superman superboy supergirl catwoman aquaman
hogwarts	dumbledore hallows half-blood malfoy snape	evernight sunnydale garderobe blandings collinwood	sunnydale collinwood calarts greendale millfield
turing	nondeterministic non-deterministic computability deterministic finite-state	non-deterministic finite-state nondeterministic buchi primality	pauling hotelling heting lessing hamming
florida	gainesville fla jacksonville tampa lauderdale	fla alabama gainesville tallahassee texas	texas louisiana georgia california carolina
object-oriented	aspect-oriented smalltalk event-driven prolog domain-specific	aspect-oriented event-driven objective-c dataflow 4 gl	event-driven domain-specific rule-based data-driven human-centered
dancing	singing dance dances dancers tap-dancing	singing dance dances breakdancing clowning	singing rapping breakdancing miming busking

Table 1: Target words and their 5 most similar words, as induced by different embeddings.

Word Embeddings vs. Sparse Vectors

- Count vectors: sparse and large
- Embedded vectors: small dense
- One advantage: dimensionality
- More contested advantage: better generalization
- See Levy et al. 2015 (Improving Distributional Similarity with Lessons Learned from Word Embeddings) for detailed analysis

Applications

- Word vectors are often input to various end applications
- Parsing, co-reference resolution, namedentity recognition, semantic role labeling, etc.
- Input to sentence models, including recurrent and recursive architectures

