CS5740: Natural Language Processing

Lexical Semantics

Instructor: Yoav Artzi

Overview

- Word sense disambiguation (WSD)
 - Wordnet
- Semantic role labeling (SRL)
- Continuous representations

Lemma and Wordform

- A <u>lemma</u> (or <u>citation form</u>)
 - Basic part of the word, same stem, rough semantics
- A wordform
 - The "inflected" word as it appears in text

Wordform	Lemma
banks	bank
sung	sing
duermes	dormir

Word Senses

- One lemma can have many meanings:
- Sense 1: ...a bank₁ can hold the investments in a custodial account...
- "...as agriculture burgeons on the east Sense 2: bank, the river will shrink even more"
 - Sense (or word sense)
 - A discrete representation of an aspect of a word's meaning.
 - The lemma bank here has two senses

Homonymy

Homonyms: words that share a form but have unrelated, distinct meanings:

```
bank<sub>1</sub>: financial institution, bank<sub>2</sub>: sloping land bat<sub>1</sub>: club for hitting a ball, bat<sub>2</sub>: nocturnal flying mammal
```

- 1. Homographs (bank/bank, bat/bat)
- 2. Homophones:
 - 1. Write and right
 - 2. Piece and peace

Homonymy in NLP

- Information retrieval
 - "bat care"
- Machine Translation
 - bat: murciélago (animal) or bate (for baseball)
- Text-to-Speech
 - bass (stringed instrument) vs. bass (fish)

Quick Test for Multi Sense Words

- Zeugma
 - When a word applies to two others in different senses

```
Which flights serve breakfast?
Does Lufthansa serve Philadelphia?
Does Lufthansa serve breakfast and San Jose?
```

- The conjunction sounds "weird"
 - So we have two senses for serve

Synonyms

- Word that have the same meaning in some or all contexts.
 - filbert / hazelnut
 - couch / sofa
 - big / large
 - automobile / car
 - vomit / throw up
 - Water / H₂0
- Two words are synonyms if ...
 - ... they can be substituted for each other
- Very few (if any) examples of perfect synonymy
 - Often have different notions of politeness, slang, etc.

Synonyms

- Perfect synonymy is rare
- Consider the words big and large
- Are they synonyms?
 - How big is that plane?
 - Would I be flying on a large or small plane?
- How about here:
 - Miss Nelson became a kind of big sister to Benjamin.
 - Miss Nelson became a kind of large sister to Benjamin.
- Why?
 - big has a sense that means being older, or grown up
 - large lacks this sense
- Synonymous relations are defined between senses

Antonyms

- Senses that are opposites with respect to one feature of meaning
- Otherwise, they are very similar!

```
dark short fast rise hot up in light long slow fall cold down out
```

- Antonyms can
 - Define a binary opposition: in/out
 - Be at the opposite ends of a scale: fast/slow
 - Be reversives: rise/fall
- Very tricky to handle with some representations remember for later!

Hyponymy and Hypernymy

- One sense is a hyponym/subordinate of another if the first sense is more specific, denoting a subclass of the other
 - car is a hyponym of vehicle
 - mango is a hyponym of fruit
- Conversely hypernym/superordinate ("hyper is super")
 - vehicle is a hypernym of car
 - fruit is a hypernym of mango
- Usually transitive
 - (A hypo B and B hypo C entails A hypo C)

Superordinate/hyper	vehicle	fruit	furniture
Subordinate/hyponym	car	mango	chair

WordNet

- A hierarchically organized lexical database
- On-line thesaurus + aspects of a dictionary
 - Word senses and sense relations
 - Some other languages available (Arabic, Finnish, German, Portuguese...)

Category	Unique Strings
Noun	117,798
Verb	11,529
Adjective	22,479
Adverb	4,481

WordNet

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: bass Search WordNet

Display Options: (Select option to change)
Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Display options for sense: (gloss) "an example sentence"

Noun

- <u>S:</u> (n) bass (the lowest part of the musical range)
- S: (n) bass, bass part (the lowest part in polyphonic music)
- <u>S:</u> (n) bass, basso (an adult male singer with the lowest voice)
- <u>S:</u> (n) <u>sea bass</u>, **bass** (the lean flesh of a saltwater fish of the family Serranidae)
- <u>S:</u> (n) <u>freshwater bass</u>, **bass** (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- <u>S:</u> (n) bass, bass voice, basso (the lowest adult male singing voice)
- <u>S:</u> (n) bass (the member with the lowest range of a family of musical instruments)
- <u>S:</u> (n) bass (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

Adjective

• <u>S:</u> (adj) bass, <u>deep</u> (having or denoting a low vocal or instrumental range) "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

WordNet

- S: (n) bass, basso (an adult male singer with the lowest voice)
 - o direct hypernym | inherited hypernym | sister term
 - <u>S:</u> (n) <u>singer</u>, <u>vocalist</u>, <u>vocalizer</u>, <u>vocaliser</u> (a person who sings)
 - S: (n) musician, instrumentalist, player (someone who plays a musical instrument (as a profession))
 - S: (n) performer, performing artist (an entertainer who performs a dramatic or musical work for an audience)
 - S: (n) entertainer (a person who tries to please or amuse)
 - S: (n) person, individual, someone, somebody, mortal, soul (a human being) "there was too much for one person to do"
 - <u>S:</u> (n) <u>organism</u>, <u>being</u> (a living thing that has (or can develop) the ability to act or function independently)
 - S: (n) living thing, animate thing (a living (or once living) entity)
 - S: (n) whole, unit (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
 - S: (n) object, physical object (a tangible and visible entity; an entity that can cast a shadow) "it was full of rackets, balls and other objects"
 - <u>S:</u> (n) <u>physical entity</u> (an entity that has physical existence)
 - S: (n) entity (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

Senses and Synsets in WordNet

- Each word in WordNet has at least one sense
- Each sense has a gloss (textual description)
- The synset (synonym set), the set of near-synonyms, is a set of senses with a shared gloss
- Example: <u>chump</u> as a noun with the gloss:
 "a person who is gullible and easy to take advantage of"
- This sense of "chump" is shared with 9 words:
 chump¹, fool², gull¹, mark⁹, patsy¹, fall guy¹, sucker¹, soft touch¹, mug²
- All these senses have the same gloss → they form a synset

WordNet Noun Relations

| Relation | Also called | Definition | Example |
|----------------|---------------|---|-------------------------------------|
| Hypernym | Superordinate | From concepts to superordinates | $breakfast^1 \rightarrow meal^1$ |
| Hyponym | Subordinate | From concepts to subtypes | $meal^1 ightarrow lunch^1$ |
| Member Meronym | Has-Member | From groups to their members | $faculty^2 \rightarrow professor^1$ |
| Has-Instance | | From concepts to instances of the concept | $composer^1 \rightarrow Bach^1$ |
| Instance | | From instances to their concepts | $Austen^1 \rightarrow author^1$ |
| Member Holonym | Member-Of | From members to their groups | $copilot^1 \rightarrow crew^1$ |
| Part Meronym | Has-Part | From wholes to parts | $table^2 \rightarrow leg^3$ |
| Part Holonym | Part-Of | From parts to wholes | $course^7 	o meal^1$ |
| Antonym | | Opposites | $leader^1 \rightarrow follower^1$ |

WordNet 3.0

- Where it is:
 - http://wordnetweb.princeton.edu/perl/webwn
- Libraries
 - Python:
 - NLTK
 - Java:
 - JWNL, extJWNL
 - And more:
 - https://wordnet.princeton.edu/wordnet/relatedprojects/

Word Sense Disambiguation

I play bass in a Jazz band

musical_instrument

She was grilling a bass on the stove top freshwater_fish

Supervised WSD

- Given: a lexicon (e.g., WordNet) and a word in a sentence
- Goal: classify the sense of the word
- Linear model:

 $p(\text{sense} \mid \text{word}, \text{context}) \propto e^{\theta \cdot \phi(\text{sense}, \text{word}, \text{context})}$

Feature function looking at the sense, word, and context

Supervised WSD

- Given: a lexicon (e.g., WordNet) and a word in a sentence
- Goal: classify the sense of the word
- Linear model:

$$p(\text{sense} \mid \text{word}, \text{context}) = \frac{e^{\theta \cdot \phi(\text{sense}, \text{word}, \text{context})}}{\sum_{s'} e^{\theta \cdot \phi(s', \text{word}, \text{context})}}$$

Summing over all senses for the word (e.g., from WordNet)

Unsupervised WSD

- Goal: induce the senses of each word and classify in context
- For each word in context, compute some features
- 2. Cluster each instance using a clustering algorithm
- 3. Cluster labels are word senses

More reading: Section 20.10 of J&M

Semantic Roles

- Some word senses (a.k.a. predicates) represent events
- Events have participants that have specific roles (as arguments)
- Predicate-argument structure at the type level can be stored in a lexicon

Sematic Roles

PropBank: a semantic role lexicon

```
run.01 (operate)

ARG0 (operator)

ARG1 (machine/operation)

ARG2 (employer)

ARG3 (co-worker)

ARG4 (instrument)

Frame

Frame

Semantic roles
```

Sematic Roles

PropBank: a semantic role lexicon

run.01 (operate)

ARG0 (operator)

ARG1 (machine/operation)

ARG2 (employer)

ARG3 (co-worker)

ARG4 (instrument)

run.02 (walk quickly)

ARG0 (runner)

ARG1 (course/race)

ARG2 (opponent)

Also: FrameNet, an alternative role lexicon

Semantic Role Labeling

 Task: given a sentence, disambiguate predicate frames and annotate semantic roles

Mr. Stromach wants to resume a more influential role in running the company.

ARG1

II. Role labeling

run.01

I. Frame identification

Role Identification

Classification models similar to WSD

Mr. Stromach wants to resume a more influential role in running the company.

run.01

I. Frame identification

Role Labeling

Potential roles: Sentence spans: score(Mr. Stromach, ARG0, context) Mr. Stromach ARG0 Best matching between spans score(the company, ARG1, context) and roles ARG1 a more influential role Thore influential role, NONE, contea NONE the company Score can come Score(influential role, NONE, context) from any classifier influential role (linear, SVM, NN) score(company, NONE, context)company

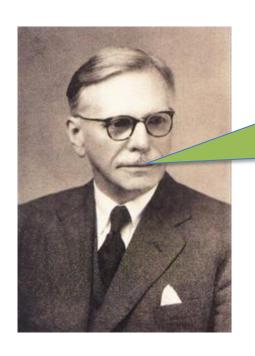
SRL

http://cogcomp.org/page/demo_view/srl

 Example: The challenges facing Iraqi forces in Mosul include narrow streets, suicide bombers and small drones that the terror group has used to target soldiers.

 Task: given two words, predict how similar they are

The Distributional Hypothesis:



You shall know a word by the company it keeps

(John Firth, 1957)

A bottle of Tesgüino is on the table.

Everybody likes tesgüino.

Tesgüino makes you drunk.

We make tesgüino out of corn.

- Occurs before drunk
- Occurs after bottle
- Is the direct object of likes

Similar to beer, wine, whiskey, ...

•

- Given a vocabulary of n words
- Represent a word w as:

$$\vec{w} = (f_1, f_2, f_3, \dots, f_n)$$

Binary (or count) features indicating the presence of the ith word in the vocabulary in the word's context

For example:

Tsegüino =
$$(1, 1, 0, ...)$$

Tsegüino =
$$(1, 1, 0, \dots)$$

beer = $(0, 1, 0, \dots)$

- Similarity can be measured using vector distance metrics
- For example, cosine similarity:

similarity
$$(w, u) = \frac{w \cdot u}{\|w\| \|u\|} = \frac{\sum_{i=1}^{n} w_i u_i}{\sqrt{\sum_{i=1}^{n} w_i^2} \sqrt{\sum_{i=1}^{n} u_i^2}}$$

which gives values between -1 (completely different), 0 (orthogonal), and 1 (the same)

Vector-space Models

- Words represented by vectors
- In contrast to the discrete class representation of word senses
- Common methods (and packages): Word2Vec, GloVe

Word2Vec

- Method (and open-source package) for learning word vectors from raw text
- Widely used across academia/industry
 - Another common package: GloVe
- Goal: good word embeddings
 - Embeddings are vectors in a low dimensional space
 - Similar words should be close to one another
- Two models:
 - Skip-gram (today)
 - CBOW (further reading: Mikolov et al. 2013)

The Skip-Gram Model

- Given: Corpus D of pairs (w, c) where w is a word and c is context
- Context may be a single neighboring word (in window of size k)
 - Later: different definition
- Consider the parameterized probability $p(c|w;\theta)$
- Goal: maximize the corpus probability

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c|w;\theta)$$

The important thing: how we parametrize the probability distribution

The Skip-Gram Model

Goal: maximize the corpus probability

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c|w;\theta)$$

where:

$$p(c|w;\theta) = \frac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_{c'} \cdot v_w}}$$

if d is the dimensionality of the vectors, we have $d \times |V| + d \times |C|$ parameters

The Skip-Gram Model

Goal: maximize the corpus probability

$$\arg\max_{\theta} \ \prod \ p(c|w;\theta)$$
 • The log of the objective is:

$$\arg\max_{\theta} \sum_{(w,c)\in D} (\log e^{v_c \cdot v_w} - \log \sum_{c'} e^{v_{c'} \cdot v_w})$$

- Not tractable in practice
 - Sum over all context intractable
 - Approximated via negative sampling

Negative Sampling for Skip-Gram

- Efficient way of deriving word embeddings
- Consider a word-context pair (w, c)
- Let the probability that this pair was observed:

$$p(D=1|w,c)$$

The probability that it was not observed is:

$$1 - p(D = 1|w,c)$$

Negative Sampling

Parameterization:

$$p(D = 1|w, c) = \frac{1}{1 + e^{-v_c \cdot v_w}}$$

New learning objective:

$$\arg \max_{\theta} \prod_{(w,c) \in D} p(D = 1 | w, c) \prod_{(w,c) \in D'} p(D = 0 | w, c)$$

Need to get D'

Negative Sampling

- For a given k, the size of D' is k-times bigger than D
- Each context c is a word
- For each observed word-context pair, k samples are generated based on unigram distribution

Negative Sampling

New learning objective:

$$\arg \max_{\theta} \prod_{(w,c) \in D} p(D = 1 | w, c) \prod_{(w,c) \in D'} p(D = 0 | w, c)$$

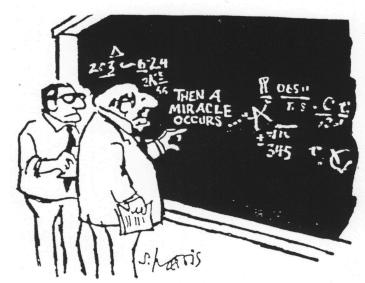
Original learning objective:

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c|w;\theta)$$

 How does the new objective approximate the original one?

The Skip-Gram Model

- Optimized for word-context pairs
- To get word embedding, take the vectors of the words v_w
- But why does it work?
- Intuitively: words that share many contexts will be similar
- Formal:
 - Neural Word Embedding as Implicit Matrix Factorization / Levy and Goldberg 2014
 - A Latent Variable Model Approach to PMIbased Word Embeddings / Arora et al. 2016



I think you should be a little more specific, here in Step 2

Word Galaxy

- Word Galaxy
 - http://anthonygarvan.github.io/wordgalaxy/
- Embeddings for word substitution
 - http://ghostweather.com/files/word2vecpride/

Structured Contexts

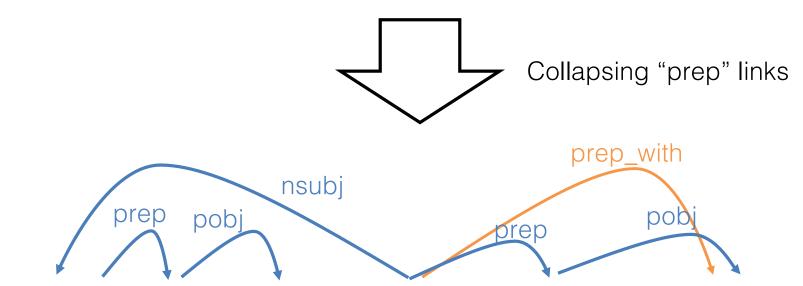
Scientists from Australia discover with a telescope a...

Skip-Gram context with n=2

- Just looking at neighboring words, often doesn't capture arguments and modifiers
- Maybe just a bigger window?
- Can we use anything except adjacency to get context?

Structured Contexts

Scientists from Australia discover with a telescope a...



Scientists from Australia discover with a telescope a...

scientists/nsubj

telescope/prep_with

Structured Context

| Target Word | BoW5 | BoW2 | DEPS |
|-----------------|-------------------|-------------------|-----------------|
| batman | nightwing | superman | superman |
| | aquaman | superboy | superboy |
| | catwoman | aquaman | supergirl |
| | superman | catwoman | catwoman |
| | manhunter | batgirl | aquaman |
| hogwarts | dumbledore | evernight | sunnydale |
| | hallows | sunnydale | collinwood |
| | half-blood | garderobe | calarts |
| | malfoy | blandings | greendale |
| | snape | collinwood | millfield |
| turing | nondeterministic | non-deterministic | pauling |
| | non-deterministic | finite-state | hotelling |
| | computability | nondeterministic | heting |
| | deterministic | buchi | lessing |
| | finite-state | primality | hamming |
| florida | gainesville | fla | texas |
| | fla | alabama | louisiana |
| | jacksonville | gainesville | georgia |
| | tampa | tallahassee | california |
| | lauderdale | texas | carolina |
| object-oriented | aspect-oriented | aspect-oriented | event-driven |
| | smalltalk | event-driven | domain-specific |
| | event-driven | objective-c | rule-based |
| | prolog | dataflow | data-driven |
| | domain-specific | 4gl | human-centered |
| dancing | singing | singing | singing |
| | dance | dance | rapping |
| | dances | dances | breakdancing |
| | dancers | breakdancing | miming |
| | tap-dancing | clowning | busking |

Table 1: Target words and their 5 most similar words, as induced by different embeddings.

Word Embeddings vs. Sparse Vectors

- Count vectors: sparse and large
- Embedded vectors: small dense
- One advantage: dimensionality
- More contested advantage: better generalization
 - See Levy et al. 2015 (Improving Distributional Similarity with Lessons Learned from Word Embeddings) for detailed analysis

Applications

- Word vectors are often input to various end applications
 - Parsing, co-reference resolution, namedentity recognition, semantic role labeling, etc.
- Input to sentence models, including recurrent and recursive architectures