CS5740: Natural Language Processing

Computation Graphs

From Practical Neural Networks for NLP / Chris Dyer,
Yoav Goldberg, Graham Neubig / EMNLP 2016




Computation Graphs

* The descriptive language of deep learning models

e Functional description of the required computation

e Can be instantiated to do two types of computation:
* Forward computation

* Backward computation



expression:

X

graph:

A node is a {tensor, matrix, vector, scalar} value

®



An edge represents a function argument
(and also data dependency). They are just
pointers to nodes.

A node with an incoming edge is a function of
that edge’s tail node.

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)

OF
(u) -

times a derivative of an arbitrary input

flu)=u’ of(u) OF :( OF )T
ou Jf(u) Of(u)




expression:
x' A
graph:

Functions can be nullary, unary,
binary, ... n-ary. Often they are unary or binary.

f(U,V)=UV

Fw) = /Q\@



expression:
x| Ax

graph:

Computation graphs are directed and acyclic (usually)



expression:
x| Ax

graph:

f(x,A) =x"Ax

ofRo

af<X7 A) _ T
e (A" +A)x

8f(X7A) _ T
8A = XX




expression:
x' Ax+b-x+c

graph:




expression:
y=lx"Ax+b-x+c

graph:

variable names are just labelings of nodes.



Algorithms

- Graph construction
- Forward propagation
* Loop over nodes in topological order
« Compute the value of the node given its inputs

* Given my inputs, make a prediction (or compute an “error” with respect to a “target
output”)

- Backward propagation
» Loop over the nodes in reverse topological order starting with a final goal node

« Compute derivatives of final goal node value with respect to each edge’s talil
node

» How does the output change if | make a small change to the inputs?



Forward Propagation

graph:




Forward Propagation

graph:




Forward Propagation

graph:




Forward Propagation

graph:




Forward Propagation

graph:




Forward Propagation

graph:




Forward Propagation

graph:




Forward Propagation

graph:




®Draw an MLP Computation
Graph

h' = o([¢(21); p(,)] W' +b)
h? = o(h; W* + b?)
p = softmax(h*W?* + b?)



Constructing Graphs: Two
Software Models

- Static declaration
 Phase 1: define an architecture
(maybe with some primitive flow control like loops and
conditionals)

 Phase 2: run a bunch of data through it to train the
model and/or make predictions

- Dynamic declaration

* Graph is defined implicitly (e.g., using operator
overloading) as the forward computation is executed



Batching

Packing a few examples together has significant
computational benefits

CPU: helpful

GPU: you get to use all the GPU cores —> world
changing!

Easy with simple networks, but gets harder as the
architecture becomes more complex



T'he MLP
h = tanh(Wx + b) fuv)=u+v

y:Vh—l_a f(M,v) =Mv

Input and intermediate
results become tensors —
batch is another dimension!
Do not add batch dimension
to parameters! What
happens then?




Hierarchical Structure

Words Sentences

)
Y
— D
Word

embedding concat
- VP

LSTM over root
+ morphemes | | VP

LSTM over )
characters

)

Alice gave a message to Bob

4 4 4 4 4 )
4 4 4 4 4 4
D A A D A A

Phrases Documents

D00« This film was completely unbelievable.
VY
A
[cal

. m hungry

DO« The characters were wooden and the plot was absurd.

That being said, I liked it.
D] [w]



Batching with Complex
Networks

 Complex networks may include different parts with
varying length (more about this later)

* |tis very hard to batch complete examples this way
* But: you can still batch sub-parts across examples,

SO you alternate between batched and non-
batched computations



