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Computation Graphs
• The descriptive language of deep learning models 

• Functional description of the required computation 

• Can be instantiated to do two types of computation: 

• Forward computation 

• Backward computation
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An edge represents a function argument 
(and also data dependency). They are just 
pointers to nodes.
A node with an incoming edge is a function of 
that edge’s tail node.
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Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.
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Computation graphs are directed and acyclic (usually)
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variable names are just labelings of nodes.



Algorithms
• Graph construction

• Forward propagation

• Loop over nodes in topological order 

• Compute the value of the node given its inputs 

• Given my inputs, make a prediction (or compute an “error” with respect to a “target 
output”) 

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node 

• Compute derivatives of final goal node value with respect to each edge’s tail 
node 

• How does the output change if I make a small change to the inputs?
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Draw an MLP Computation 
Graph

h1 = �([�(xl);�(xr)]W
1 + b1)

h2 = �(h1W
2 + b2)

p = softmax(h2W3 + b3)

<latexit sha1_base64="sCku1/ejeJ+4jvBgjPvDKJ3nKpc="></latexit>



Constructing Graphs: Two 
Software Models

• Static declaration

• Phase 1: define an architecture 
(maybe with some primitive flow control like loops and 
conditionals) 

• Phase 2: run a bunch of data through it to train the 
model and/or make predictions 

• Dynamic declaration

• Graph is defined implicitly (e.g., using operator 
overloading) as the forward computation is executed 



Batching
• Packing a few examples together has significant 

computational benefits 

• CPU: helpful 

• GPU: you get to use all the GPU cores —> world 
changing! 

• Easy with simple networks, but gets harder as the 
architecture becomes more complex



The MLP
h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

• Input and intermediate 
results become tensors — 
batch is another dimension! 

• Do not add batch dimension 
to parameters! What 
happens then? 



Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.



Batching with Complex 
Networks

• Complex networks may include different parts with 
varying length (more about this later) 

• It is very hard to batch complete examples this way 

• But: you can still batch sub-parts across examples, 
so you alternate between batched and non-
batched computations


