CS5740: Natural Language Processing

Computation Graphs

Instructor: Yoav Artzi

From Practical Neural Networks for NLP / Chris Dyer, Yoav Goldberg, Graham Neubig / EMNLP 2016

Computation Graphs

- The descriptive language of deep learning models
- Functional description of the required computation
- Can be instantiated to do two types of computation:
- Forward computation
- Backward computation

expression:

x

graph:

A node is a \{tensor, matrix, vector, scalar\} value

An edge represents a function argument (and also data dependency). They are just pointers to nodes.

A node with an incoming edge is a function of that edge's tail node.

A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial F}{\partial f(\mathbf{u})}$.

expression:

$$
\mathbf{x}^{\top} \mathbf{A}
$$

graph:
Functions can be nullary, unary, binary, ... n-ary. Often they are unary or binary.

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

Computation graphs are directed and acyclic (usually)

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

expression:

$$
y=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

variable names are just labelings of nodes.

Algorithms

- Graph construction
- Forward propagation
- Loop over nodes in topological order
- Compute the value of the node given its inputs
- Given my inputs, make a prediction (or compute an "error" with respect to a "target output")
- Backward propagation
- Loop over the nodes in reverse topological order starting with a final goal node
- Compute derivatives of final goal node value with respect to each edge's tail node
- How does the output change if I make a small change to the inputs?

Forward Propagation

graph:

- Draw an MLP Computation Graph
 $$
\mathbf{h}^{1}=\sigma\left(\left[\phi\left(x_{l}\right) ; \phi\left(x_{r}\right)\right] \mathbf{W}^{1}+\mathbf{b}^{1}\right)
$$
 $$
\mathbf{h}^{2}=\sigma\left(\mathbf{h}_{1} \mathbf{W}^{2}+\mathbf{b}^{2}\right)
$$
 $$
\mathbf{p}=\operatorname{softmax}\left(\mathbf{h}^{2} \mathbf{W}^{3}+\mathbf{b}^{3}\right)
$$

Constructing Graphs: Two Software Models

- Static declaration
- Phase 1: define an architecture
(maybe with some primitive flow control like loops and conditionals)
- Phase 2: run a bunch of data through it to train the model and/or make predictions
- Dynamic declaration
- Graph is defined implicitly (e.g., using operator overloading) as the forward computation is executed

Batching

- Packing a few examples together has significant computational benefits
- CPU: helpful
- GPU: you get to use all the GPU cores —> world changing!
- Easy with simple networks, but gets harder as the architecture becomes more complex

The MLP

$$
\begin{aligned}
& \mathbf{h}=\tanh (\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \mathbf{y}=\mathbf{V h}+\mathbf{a}
\end{aligned}
$$

- Input and intermediate results become tensors batch is another dimension!
- Do not add batch dimension to parameters! What happens then?

Hierarchical Structure

Phrases

Sentences

Documents

Batching with Complex Networks

- Complex networks may include different parts with varying length (more about this later)
- It is very hard to batch complete examples this way
- But: you can still batch sub-parts across examples, so you alternate between batched and nonbatched computations

