
Computation Graphs

From Practical Neural Networks for NLP / Chris Dyer,
Yoav Goldberg, Graham Neubig / EMNLP 2016

CS5740: Natural Language Processing

Instructor: Yoav Artzi

Computation Graphs
• The descriptive language of deep learning models

• Functional description of the required computation

• Can be instantiated to do two types of computation:

• Forward computation

• Backward computation

y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument
(and also data dependency). They are just
pointers to nodes.
A node with an incoming edge is a function of
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (usually)

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

Algorithms
• Graph construction

• Forward propagation

• Loop over nodes in topological order

• Compute the value of the node given its inputs

• Given my inputs, make a prediction (or compute an “error” with respect to a “target
output”)

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node

• Compute derivatives of final goal node value with respect to each edge’s tail
node

• How does the output change if I make a small change to the inputs?

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x>Ax+ b · x+ c

Draw an MLP Computation
Graph

h1 = �([�(xl);�(xr)]W
1 + b1)

h2 = �(h1W
2 + b2)

p = softmax(h2W3 + b3)

<latexit sha1_base64="sCku1/ejeJ+4jvBgjPvDKJ3nKpc=">AAACv3icbVFda9swFJXdfXTZR9PtcS+XhZWEQbDdwArdoGMve+xgaQqxZ2RFTkQkWUhyaTD+k30Y7N9MTt3NaXdBcO655x5dXWWKM2OD4Lfn7z16/OTp/rPe8xcvXx30D19fmKLUhE5JwQt9mWFDOZN0apnl9FJpikXG6Sxbf23qsyuqDSvkD7tRNBF4KVnOCLaOSvu/YoHtKsurVf0zhKPPEBu2FHgI81it2PA65aNTaKEeJXfqWaP+AHdp5tIRxHGv4xbBEfy1+8enYccj2vWIdjxU3cxTxVqAKXIr8HU97Pp3fI53fY5HaX8QjINtwEMQtmCA2jhP+zfxoiCloNISjo2Zh4GySYW1ZYTTuheXhipM1nhJ5w5KLKhJqu3+a3jvmAXkhXZHWtiy3Y4KC2M2InPKZkhzv9aQ/6vNS5ufJBWTqrRUktuL8pKDLaD5TFgwTYnlGwcw0czNCmSFNSbWfXnPLSG8/+SH4CIah5Px5PtkcBa169hHb9E7NEQh+ojO0Dd0jqaIeJ+8zFt73P/iL33pq1up77U9b9BO+Js/shnXLg==</latexit>

Constructing Graphs: Two
Software Models

• Static declaration

• Phase 1: define an architecture
(maybe with some primitive flow control like loops and
conditionals)

• Phase 2: run a bunch of data through it to train the
model and/or make predictions

• Dynamic declaration

• Graph is defined implicitly (e.g., using operator
overloading) as the forward computation is executed

Batching
• Packing a few examples together has significant

computational benefits

• CPU: helpful

• GPU: you get to use all the GPU cores —> world
changing!

• Easy with simple networks, but gets harder as the
architecture becomes more complex

The MLP
h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

• Input and intermediate
results become tensors —
batch is another dimension!

• Do not add batch dimension
to parameters! What
happens then?

Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.

Batching with Complex
Networks

• Complex networks may include different parts with
varying length (more about this later)

• It is very hard to batch complete examples this way

• But: you can still batch sub-parts across examples,
so you alternate between batched and non-
batched computations

