CS5740: Natural Language Processing

Neural Networks

Instructor: Yoav Artzi

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning,
Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov



Overview

 Introduction to Neural Networks
* Word representations
* NN Optimization tricks



Some History

Neural network algorithms date to the 80's
— Originally inspired by early neuroscience
Historically slow, complex, and unwieldy
Now: term Is abstract enough to

encompass almost any model — but
useful!

Dramatic shift in last 3-4 years away from
MaxEnt (linear, convex) to “neural net”
(non-linear architecture, non-convex)



The “Promise”

Most ML works well because of human-
designed representations and input features

ML becomes just optimizing weights

Representation learning attempts to
automatically learn good features and
representations

Deep learning attempts to learn multiple
levels of representation of increasing
complexity/abstraction




Neuror

* Neural networks comes with thelir
terminological baggage
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e Parameters:
— Weights: w; and b
— Activation function

* |f we drop the activation function, reminds
you of something”



Neural Network

oooooooooo

output layer
iInput layer
hidden layer



Neural Network

iInput layer
hidden layer 1 hidden layer 2



Matrix Notation
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No activation/non-linearity function



Matrix Notation
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Activation Functions

» Entry-wise function: f: R — R
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Neurons and Other Models

* A single neuron is a perceptron
« Strong connection to MaxEnt — how?



From MaxEnt to Neural Nets

 Vector form MaxEnt:
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From MaxEnt to Neural Nets

* Vector form MaxEnt: o (z,y)
P(y’xyw) — Zy/ ewT¢($,y/)
* For two classes:
1
P(yla;w) = s = f(w'2)
* Neuron:
— Add an “always on” feature for class prior = bias
term (b)
hawp(2) = fw' 2+ b)
1
f(u)
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Neural Net = Several MaxEnt
Models

e Feed a number of
MaxEnt models =
vector of outputs

* And repeat ...




Neural Net = Several MaxEnt
Models

Layer L,

« But: how do we tell the hidden layer what to do”
— Learning will figure it out



How to Train?

* No hidden layer:
— Supervised
— Just like MaxEnt
« With hidden layers:

— Latent units = not convex

— What do we do?

» Back-propagate the gradient
« About the same, but no guarantees



Probabilistic Output from Neural
Nets

« What it we want the
output to be a
probabillity distribution
over possible outputs?

* Normalize the output | SHptiRyer
input layer

aCt|Vat|OnS USIﬂg hidden layer

softmax: y = softmax(o)

exp(oi)

Zﬁ{:l exp(0j)

softmax(o0;) =

— Where o is the output
layer

— Usually: no non-linearity
before softmax



Word Representations

So far, atomic symbols:

— “hotel”, “conference”, “walking”, “___ing”
But neural networks take vector input
How can we bridge the gap?

One-hot vectors

hotel = (0000...00000000100000000]
conference =[0000...00000000000100000]

— Dimensionality:
« Size of vocabulary
« 20K for speech
« 500K for broad-coverage domains
« 13M for Google corpora



Word Representations

 One-hot vectors:

hotel = 0000

conference =[00 00
hotels =[0000
— Problems?

...00000000100000000
...00000000000100000
...0000000000000000 1

— Information sharing”
* "hotel” vs. "hotels”



Word Embeddings

* Each word is represented using a dense
low-dimensional vector

— Low-dimensional << vocabulary size

e |f trained well, similar words will have
similar vectors

* How to train” What objective to maximize”?
— Soon ...



Word Embeddings as Features

« Example: sentiment classification

— very positive, positive, neutral, negative, very
negative

» Feature-based models: bag of words

* Any good neural net architecture®

— Concatenate all the vectors
* Problem: different document - different length

— Instead: sum, average, etc.



Neural Bag-of-words
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[lyyer et al. 2015; Wang and Manning 2012]



Classity Word Pair

Goal: build a classifier that
given a pair of words,
classity If they are the full
name of a person or not

The classifier is a multi-
layer-perceptron with three
layers

Make a drawing!

Write the matrix notation,
including dimensionality of
matrices (choose as you
wish, and as needed

What are the parameters to
be learned

Inputs: xz;, z,

Input vocabulary: V

Embedding function: ¢ : V — R?%°
Weight matrices: W1, W2 W?
Bias vectors: b!, b?, b?

Operations: 2 x 0 : R* — R*, 1 x softmax



Practical Tips

Select network structure appropriate for the problem
— Window vs. recurrent vs. recursive
— Non-linearity function

Gradient checks to identify bugs
— If you build from scratch

Parameter initialization

Model is powerful enough?
— If not, make it larger

— Yes, so regularize, otherwise it will overfit

Know your non-linearity function and its gradient
— Example tanh(x)

tanh(z)

0
— — %tanh(az) = 1 — tanh®(x)




Debugging

» Verify value of initial loss when using
softmax

» Perfectly fit a single mini-batch

* |f learning fails completely, maybe
gradients stuck
— Check learning rate
— Verity parameter initialization
— Change non-linearity functions




Avoiding Overtitting

Reduce model size (but not too much)

_1 and L2 regularization

—arly stopping (e.q., patience)

Dropout (Hinton et al. 2012)

— Randomly set 50% of inputs in each layer to O




