CS5740: Natural Language Processing

Neural Networks

Instructor: Yoav Artzi

Overview

- Introduction to Neural Networks
- Word representations
- NN Optimization tricks

Some History

- Neural network algorithms date to the 80's
 - Originally inspired by early neuroscience
- Historically slow, complex, and unwieldy
- Now: term is abstract enough to encompass almost any model – but useful!
- Dramatic shift in last 3-4 years away from MaxEnt (linear, convex) to "neural net" (non-linear architecture, non-convex)

The "Promise"

- Most ML works well because of humandesigned representations and input features
- ML becomes just optimizing weights
- Representation learning attempts to automatically learn good features and representations
- Deep learning attempts to learn multiple levels of representation of increasing complexity/abstraction

Neuron

 Neural networks comes with their terminological baggage

- Parameters:
 - Weights: w_i and b
 - Activation function
- If we drop the activation function, reminds you of something?

Neural Network

hidden layer

Neural Network

hidden layer 1 hidden layer 2

Matrix Notation

No activation/non-linearity function

Matrix Notation

$$\begin{aligned} \mathbf{h}_1 &= \mathbf{a}_1 \mathbf{W}_{11}' + \mathbf{a}_2 \mathbf{W}_{21}' + \mathbf{a}_3 \mathbf{W}_{31}' + \mathbf{b}_1' \\ \mathbf{o}_1 &= \mathbf{h}_1 \mathbf{W}_{11}'' + \mathbf{h}_2 \mathbf{W}_{21}'' + \mathbf{h}_3 \mathbf{W}_{31}'' + \mathbf{h}_4 \mathbf{W}_{41}'' + \mathbf{b}_1'' \\ \mathbf{a}_1 & \mathbf{h}_2 \\ \mathbf{a}_3 & \mathbf{h}_4 & \mathbf{o}_1 \\ \mathbf{o}_1 &= \mathbf{h}_1 \mathbf{W}_{12}'' + \mathbf{h}_2 \mathbf{W}_{22}'' + \mathbf{h}_3 \mathbf{W}_{32}'' + \mathbf{h}_4 \mathbf{W}_{42}'' + \mathbf{b}_1'' \\ \mathbf{h}_2 &= \mathbf{a}_1 \mathbf{W}_{14}' + \mathbf{a}_2 \mathbf{W}_{24}' + \mathbf{a}_3 \mathbf{W}_{34}' + \mathbf{b}_4' \end{aligned}$$

Activation Functions

• Entry-wise function: $f: \mathbb{R} \to \mathbb{R}$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neurons and Other Models

- A single neuron is a perceptron
- Strong connection to MaxEnt how?

From MaxEnt to Neural Nets

Vector form MaxEnt:

$$P(y|x;w) = \frac{e^{w^{\top}\phi(x,y)}}{\sum_{y'} e^{w^{\top}\phi(x,y')}}$$

For two classes:

$$P(y_{1}|x;w) = \frac{e^{w^{\top}\phi(x,y_{1})}}{e^{w^{\top}\phi(x,y_{1})} + e^{w^{\top}\phi(x,y_{2})}}$$

$$= \frac{e^{w^{\top}\phi(x,y_{1})}}{e^{w^{\top}\phi(x,y_{1})} + e^{w^{\top}\phi(x,y_{2})}} \frac{e^{-w^{\top}\phi(x,y_{1})}}{e^{-w^{\top}\phi(x,y_{1})}}$$

$$= \frac{1}{1 + e^{w^{\top}(\phi(x,y_{2}) - \phi(x,y_{2}))}}$$
Function (sigmoid)
$$= \frac{1}{1 + e^{-w^{\top}z}} = f(w^{\top}z)$$

$$z = \phi(x,y_{1}) - \phi(x,y_{2})$$

From MaxEnt to Neural Nets

Vector form MaxEnt:

$$P(y|x;w) = \frac{e^{w^{\top}\phi(x,y)}}{\sum_{y'} e^{w^{\top}\phi(x,y')}}$$

For two classes:

$$P(y_1|x;w) = \frac{1}{1 + e^{-w^{\top}z}} = f(w^{\top}z)$$

- Neuron:
 - Add an "always on" feature for class prior → bias term (b)

$$h_{w,b}(z) = f(w^{\top}z + b)$$

 $f(u) = \frac{1}{1 + e^{-u}}$

Neural Net = Several MaxEnt Models

- Feed a number of MaxEnt models > vector of outputs
- And repeat ...

Neural Net = Several MaxEnt Models

- But: how do we tell the hidden layer what to do?
 - Learning will figure it out

How to Train?

- No hidden layer:
 - Supervised
 - Just like MaxEnt
- With hidden layers:
 - Latent units → not convex
 - What do we do?
 - Back-propagate the gradient
 - About the same, but no guarantees

Probabilistic Output from Neural Nets

- What if we want the output to be a probability distribution over possible outputs?
- Normalize the output activations using

softmax:

$$y = \operatorname{softmax}(\mathbf{o})$$

$$\operatorname{softmax}(\mathbf{o}_i) = \frac{\exp(\mathbf{o}_i)}{\sum_{j=1}^k \exp(\mathbf{o}_j)}$$

- Where o is the output layer
- Usually: no non-linearity before softmax

Word Representations

- So far, atomic symbols:
 - "hotel", "conference", "walking", "___ing"
- But neural networks take vector input
- How can we bridge the gap?
- One-hot vectors

```
hotel = [0000...0000000100000000]
conference = [0000...0000000000100000]
```

- Dimensionality:
 - Size of vocabulary
 - 20K for speech
 - 500K for broad-coverage domains
 - 13M for Google corpora

Word Representations

One-hot vectors:

- Problems?
- Information sharing?
 - "hotel" vs. "hotels"

Word Embeddings

- Each word is represented using a dense low-dimensional vector
 - Low-dimensional << vocabulary size
- If trained well, similar words will have similar vectors
- How to train? What objective to maximize?
 - Soon ...

Word Embeddings as Features

- Example: sentiment classification
 - very positive, positive, neutral, negative, very negative
- Feature-based models: bag of words
- Any good neural net architecture?
 - Concatenate all the vectors
 - Problem: different document -> different length
 - Instead: sum, average, etc.

Neural Bag-of-words

BOW + fancy smoothing + SVM NBOW + DAN

[lyyer et al. 2015; Wang and Manning 2012]

Classify Word Pair

- Goal: build a classifier that given a pair of words, classify if they are the full name of a person or not
- The classifier is a multilayer-perceptron with three layers
- Make a drawing!
- Write the matrix notation, including dimensionality of matrices (choose as you wish, and as needed)
- What are the parameters to be learned

Inputs: x_l, x_r

Input vocabulary: \mathcal{V}

Embedding function: $\phi: \mathcal{V} \to \mathbb{R}^{256}$

Weight matrices: $\mathbf{W}^1, \mathbf{W}^2, \mathbf{W}^3$

Bias vectors: $\mathbf{b}^1, \mathbf{b}^2, \mathbf{b}^3$

Operations: $2 \times \sigma : \mathbb{R}^* \to \mathbb{R}^*, 1 \times \text{softmax}$

Practical Tips

- Select network structure appropriate for the problem
 - Window vs. recurrent vs. recursive
 - Non-linearity function
- Gradient checks to identify bugs
 - If you build from scratch
- Parameter initialization
- Model is powerful enough?
 - If not, make it larger
 - Yes, so regularize, otherwise it will overfit
- Know your non-linearity function and its gradient
 - Example tanh(x)

$$\frac{\partial}{\partial x} \tanh(x) = 1 - \tanh^2(x)$$

Debugging

- Verify value of initial loss when using softmax
- Perfectly fit a single mini-batch
- If learning fails completely, maybe gradients stuck
 - Check learning rate
 - Verify parameter initialization
 - Change non-linearity functions

Avoiding Overfitting

- Reduce model size (but not too much)
- L1 and L2 regularization
- Early stopping (e.g., patience)
- Dropout (Hinton et al. 2012)
 - Randomly set 50% of inputs in each layer to 0