CS5740: Natural Language Processing

Neural Networks

Instructor: Yoav Artzi

Slides adapted from Dan Klein, Dan Jurafsky, Chris Manning, Michael Collins, Luke Zettlemoyer, Yejin Choi, and Slav Petrov
Overview

• Introduction to Neural Networks
• Word representations
• NN Optimization tricks
Some History

• Neural network algorithms date from the 80’s
 – Originally inspired by early neuroscience
• Historically slow, complex, and unwieldy
• Now: term is abstract enough to encompass almost any model – but useful!
• Dramatic shift in last 2-3 years away from MaxEnt (linear, convex) to “neural net” (non-linear architecture, non-convex)
The “Promise”

- Most ML works well because of human-designed representations and input features
- ML becomes just optimizing weights
- **Representation learning** attempts to automatically learn good features and representations
- **Deep learning** attempts to learn multiple levels of representation of increasing complexity/abstraction
Neuron

• Neural networks come with their terminological baggage

• Parameters:
 – Weights: w_i and b
 – Activation function

• If we drop the activation function, reminds you of something?
Neural Network
Neural Network
Matrix Notation

\[W''(W'a + b') + b'' \]

\[h_1 = W'_{11}a_1 + W'_{12}a_2 + b'_1 \]

\[h_2 = W'_{21}a_1 + W'_{22}a_2 + b'_2 \]

\[o_1 = W''_{11}h_1 + W''_{12}h_2 + b''_1 \]

\[o_2 = W''_{21}h_1 + W''_{22}h_2 + b''_2 \]
Neuron and Other Models

- A single neuron is a perceptron
- Strong connection to MaxEnt – how?
From MaxEnt to Neural Nets

• Vector form MaxEnt:

\[
P(y|x; w) = \frac{e^{w^\top \phi(x,y)}}{\sum_{y'} e^{w^\top \phi(x,y')}}
\]

• For two classes:

\[
P(y_1|x; w) = \frac{e^{w^\top \phi(x,y_1)}}{e^{w^\top \phi(x,y_1)} + e^{w^\top \phi(x,y_2)}}
\]

\[
= \frac{e^{w^\top \phi(x,y_1)}}{e^{w^\top \phi(x,y_1)} + e^{w^\top \phi(x,y_2)}} \cdot \frac{e^{-w^\top \phi(x,y_1)}}{e^{-w^\top \phi(x,y_1)}}
\]

\[
= \frac{1}{1 + e^{w^\top (\phi(x,y_2) - \phi(x,y_2))}}
\]

\[
= \frac{1}{1 + e^{-w^\top z}} = f(w^\top z)
\]

\[
z = \phi(x, y_1) - \phi(x, y_2)
\]
From MaxEnt to Neural Nets

• Vector form MaxEnt:

\[P(y|x; w) = \frac{e^{w^\top \phi(x,y)}}{\sum_{y'} e^{w^\top \phi(x,y')}} \]

• For two classes:

\[P(y_1|x; w) = \frac{1}{1 + e^{-w^\top z}} = f(w^\top z) \]

• Neuron:
 – Add an “always on” feature for class prior \(\rightarrow \) bias term (b)

\[h_{w,b}(z) = f(w^\top z + b) \]

\[f(u) = \frac{1}{1 + e^{-u}} \]
Neural Net = Several MaxEnt Models

• Feed a number of MaxEnt models \Rightarrow vector of outputs
• And repeat ...
Neural Net = Several MaxEnt Models

• But: how do we tell the hidden layer what to do?
 – Learning will figure it out
How to Train?

• No hidden layer:
 – Supervised
 – Just like MaxEnt

• With hidden layers:
 – Latent units \rightarrow not convex
 – What do we do?
 • Back-propagate the gradient
 • About the same, but no guarantees
Probabilistic Output from Neural Nets

• What if we want the output to be a probability distribution over possible outputs?

• Normalize the output activations using **softmax**:

\[
y = \text{softmax}(W \cdot z + b)
\]

\[
\text{softmax}(q) = \frac{e^q}{\sum_{j=1}^{k} e^{q_j}}
\]

– Where \(q \) is the output layer
Word Representations

• So far, atomic symbols:
 – “hotel”, “conference”, “walking”, “___ing”
• But neural networks take vector input
• How can we bridge the gap?
• One-hot vectors

hotel = \[0 0 0 0 \ldots 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0\]
conference = \[0 0 0 0 \ldots 0 1 0 0 0 0\]

– Dimensionality:
 • Size of vocabulary
 • 20K for speech
 • 500K for broad-coverage domains
 • 13M for Google corpora
Word Representations

• One-hot vectors:

 hotel = [0 0 0 0 ... 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
 conference = [0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
 hotels = [0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

 – Problems?
 – Information sharing?
 • “hotel” vs. “hotels”
Word Embeddings

• Each word is represented using a dense low-dimensional vector
 – Low-dimensional << vocabulary size
• If trained well, similar words will have similar vectors
• How to train? What objective to maximize?
 – Soon …
Word Embeddings as Features

• Example: sentiment classification
 – very positive, positive, neutral, negative, very negative

• Feature-based models: bag of words

• Any good neural net architecture?
 – Concatenate all the vectors
 • Problem: different document → different length
 – Instead: sum, average, etc.
Neural Bag-of-words

Deep Averaging Networks

IMDB sentiment analysis

- BOW + fancy smoothing + SVM
- NBOW + DAN

[Iyyer et al. 2015; Wang and Manning 2012]
Practical Tips

- Select network structure appropriate for the problem
 - Window vs. recurrent vs. recursive
 - Non-linearity function
- Gradient checks to identify bugs
 - If you build from scratch
- Parameter initialization
- Model is powerful enough?
 - If not, make it larger
 - Yes, so regularize, otherwise it will overfit
- Know your non-linearity function and its gradient
 - Example \(\tanh(x) \)

\[
\frac{\partial}{\partial x} \tanh(x) = 1 - \tanh^2(x)
\]
Debugging

• Verify value of initial loss when using softmax
• Perfectly fit a single mini-batch
• If learning fails completely, maybe gradients stuck
 – Check learning rate
 – Verify parameter initialization
 – Change non-linearity functions
Avoiding Overfitting

• Reduce model size (but not too much)
• L1 and L2 regularization
• Early stopping (e.g., *patience*)
• Dropout (Hinton et al. 2012)
 – Randomly set 50% of inputs in each layer to 0