Machine Translation

Instructor: Yoav Artzi

Slides adapted from Michael Collins
This is an ugly business to grow old. Body and mind are broken down gradually, in a slow and creeping, and absolutely bleak ending. Each person experiences different symptoms, but the experience of aging is what unites all the animals. In the case of Wolverine 200 years old, old age gets a completely different expressions, but also ordinary mortals will be able to identify with the process goes superhero movie "Logan - Wolverine."

The cinematic universe of separate Aks-mn now his eldest son and favorite. Hugh Jackman, who announced he will not return to play the old mutant, he initiated the separation film from the character that made him Looob-al. Since "Aks-mn" starring first in 2000, Jackman returned his shoes and Wolverine's claws ten films as "Logan - Wolverine" is the third and final independent plot line of Wolverine. James Mangold ("Walk the Line," "3:10 to Yuma"), who directed the second film in the trilogy "Wolverine", joined the conscious effort to finish the story of a movie character materialize all the other films Aks-mn. So this is a film that stands alone, without the need for a real familiarity with previous films.
Overview

- Challenges in machine translation
- Classical machine translation
- A brief introduction to statistical MT
Challenges: Lexical Ambiguity

Book the flight \rightarrow reservar
Read the **book** \rightarrow libro

Kill a man \rightarrow matar
Kill a process \rightarrow acabar

Examples from Dorr et al. 1999
Challenges: Differing Word Order

- English: subject-verb-object
- Japanese: subject-object-verb

English: IBM bought Lotus
"Japanese": IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
"Japanese": Source yesterday IBM Lotus bought that said
Syntactic Structure is not Always Preserved

The bottle floated into the cave

La botella entro a la cueva flotando
(the bottle entered the cave floating)

Examples from Dorr et al. 1999
Syntactic Ambiguity Causes Problems

John hit the dog with the stick

John golpeo el perro [con palo / que tenia el palo]

Examples from Dorr et al. 1999
Pronoun Resolution

The computer outputs the data; it is fast.

La computadora imprime los datos; es rapida.

The computer outputs the data; it is stored in ascii.

La computadora imprime los datos; estan almacenados en ascii.
Overview

- Challenges in machine translation
- Classical machine translation
- A brief introduction to statistical MT
Classical I: Direct MT

- Translation is word-by-word
- Very little analysis of source text – no syntax, no semantics
- Relies on large bilingual dictionary:
 - For each word in the source language, specifies a set of translation rules
- After words are translated, simple re-ordering rules are applied
 - Example: move adjectives after nouns when translating from English to French
Classical I: Direct MT

• Rules for translating *much* or *many* into Russian:

```python
if preceding word is *how* return *skol’ko*
else if preceding word is *as* return *stol’ko zhe*
else if word is *much*
    if preceding word is *very* return *nil*
    else if following word is a noun return *mnogo*
else (word is *many*)
    if preceding word is a preposition and following word is noun return *mnogii*
else return *mnogo*
```

(From Jurafsky and Martin, edition 2, chapter 25. Originally from a system from Panov 1960)
Classical I: Direct MT

- Lack of analysis of source language causes problems:
 - Difficult to capture long-range orderings
 - Words are translated without disambiguation of their syntactic role

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said

- e.g., *that* can be a complementizer or determiner, and will often be translated differently for these two cases

They said that ...
They like that ice-cream
Classical II: Transfer-based Approaches

• Three phases in translation:
 – Analysis: Analyze the source language sentence
 • Example: build a syntactic analysis of the source language sentence
 – Transfer: Convert the source-language parse tree to a target-language parse tree
 – Generation: Convert the target-language parse tree to an output sentence
Classical III: Interlingua-based Translation

• Two phases:
 – **Analysis**: Analyze the source language sentence into a (language-independent) representation of its meaning
 – **Generation**: Convert the meaning representation into an output sentence
Classical III: Interlingua-based Translation

• Advantage: if we need to translate between n languages, need only n analysis and generation systems.
 – In transfer systems, would need n^2
• Disadvantage: what would a language-independent representation look like?
Classical III: Interlingua-based Translation

• How to represent different concepts in an interlingua?
• Different languages break down concepts in quite different ways:
 – German has two words for wall: one for an internal wall, one for a wall that is outside
 – Japanese has two words for brother: one for an elder brother, one for a younger brother
 – Spanish has two words for leg: pierna for a human’s leg, pata for an animal’s leg, or the leg of a table
• A simple intersection of these different ways of breaking down concepts is not satisfactory
 – And very hard to design
Overview

• Challenges in machine translation
• Classical machine translation
• A brief introduction to statistical MT
• Parallel corpora are available in multiple language pairs

• **Basic idea:** use a parallel corpus as a training set of translation examples

• **Classic example:** IBM work on French-English translation using Canadian Hansards (1.7M pairs)

• Idea goes back to Warren Weaver’s (1949) suggestion to use cryptanalytic techniques
... one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: “This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.”

Warren Weaver, 1949,
in a letter to Norbert Wiener
The Noisy Channel Model

- **Goal**: translate from French to English
- Have a model $p(e|f)$ to estimate the probability of an English sentence e given a French sentence f
- Estimate the parameters from training corpus
- A noisy channel model has two components:
 - $p(e)$: the language model
 - $p(f|e)$: the translation model
- Giving:
 $$p(e|f) = \frac{p(e, f)}{p(f)} = \frac{p(e)p(f|e)}{\sum_e p(e)p(f|e)}$$
 and
 $$\arg\max_e p(e|f) = \arg\max_e p(e)p(f|e)$$
Example

• Translating from Spanish to English

Que hombre tengo yo

What hunger have \(p(s/e) = 0.000014 \)
Hungry I am so \(p(s/e) = 0.000001 \)
I am so hungry \(p(s/e) = 0.0000015 \)
Have I that hunger \(p(s/e) = 0.000020 \)

(From Koehn and Knight tutorial)
Example

• Translating from Spanish to English

Que hombre tengo yo

What hunger have $p(s/e)p(e) = 0.000014 \times 0.000001$

Hungry I am so $p(s/e)p(e) = 0.000001 \times 0.0000014$

I am so hungry $p(s/e)p(e) = 0.0000015 \times 0.0001$

Have I that hunger $p(s/e)p(e) = 0.000020 \times 0.00000098$

(From Koehn and Knight tutorial)