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Computation Graphs

¥ The descriptive language of deep learning models 

¥ Functional description of the required computation 

¥ Can be instantiated to do two types of computation: 

¥ Forward computation 

¥ Backward computation



y = x

>
Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:



y = x

>
Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument  
(and also data dependency). They are just  
pointers to nodes.

A node with an incoming edge is a function of 
that edgeÕs tail node.
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Functions can be nullary, unary,  
binary, É n-ary. Often they are unary or binary.
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Computation graphs are directe d and acyclic (usually)
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variable names are just labelings of node s.



Algorithms
• Graph construction

• Forward propagation

¥ Loop over nodes in topological orde r 

¥ Compute the value of the node give n its inputs 

¥ Given my inputs, make a prediction (or compute an ÒerrorÓ with respect to a Òtarget 
outputÓ) 

• Backward propagation

¥ Loop over the nodes in reverse topological order starting with a Þnal goal node  

¥ Compute derivatives of Þnal goal node value with respect to each edgeÕs tail 
node 

¥ How does the output change if I make a small change to the  inputs?
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The MLP

h = tanh(Wx+ b)

y = Vh+ a



The MLP

h = tanh(Wx+ b)

y = Vh+ a
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Constructing Graphs



Two Software Models
• Static declaration

¥ Phase 1: deÞne an architecture 
(maybe with some primitive ßow control like loops and 
conditionals) 

¥ Phase 2: run a bunch of data through it to train the 
model and/or make pre dictions 

• Dynamic declaration

¥ Graph is deÞned implicitly (e.g., using operator 
overloading) as the forward computation is execute d 



Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.



Static Declaration
• Pros

¥ Ofßine optimization/scheduling of graphs is powe rful 

¥ Limits on operations mean better hardware  support 

• Cons

¥ Structured data (even simple stuff like sequences), even variable-
sized data, is ugly  

¥ You effectively learn a new programming language (Òthe Graph 
LanguageÓ) and you write programs in that language to process data. 

¥ examples: Torch, Theano, TensorFlow



Dynamic Declaration
• Pros

¥ library is less invasive 

¥ the forward computation is written in your favorite programming 
language with all its features, using your favorite  algorithms 

¥ interleave construction and evaluation of the  graph 

• Cons

¥ little time for graph optimization 

¥ if the graph is static, effort can be waste d 

¥ examples: Chainer, most automatic differentiation libraries, DyNet



Dynamic Structure?
¥ Hierarchical structures exist in language  

¥ We might want to let the network reßect that hierarchy 

¥ Hierarchical structure is easiest to process with 
traditional ßow-control mechanisms in your favorite 
languages 

¥ Combinatorial algorithms (e.g., dynamic programming) 

¥ Exploit independencies to compute over a large 
space of ope rations tractably


