
Computation Graphs

From Practical Neural Networks for NLP / Chris Dyer,
Yoav Goldberg, Graham Neubig / EMNLP 2016

CS5740: Natural Language Processing
Spring 2017

Instructor: Yoav Artzi

Computation Graphs

¥ The descriptive language of deep learning models

¥ Functional description of the required computation

¥ Can be instantiated to do two types of computation:

¥ Forward computation

¥ Backward computation

y = x

>
Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

y = x

>
Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument  
(and also data dependency). They are just  
pointers to nodes.

A node with an incoming edge is a function of
that edgeÕs tail node.

f (u) = u!

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

! f (u)
! u

! F
! f (u)

=
✓

! F
! f (u)

◆>

y = x

>
Ax+ b · x+ c

x

f (u) = u!

A

f (U , V) = UV

expression:

graph:

Functions can be nullary, unary,  
binary, É n-ary. Often they are unary or binary.

y = x

>
Ax+ b · x+ c

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directe d and acyclic (usually)

y = x

>
Ax+ b · x+ c

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

x A

f (x, A) = x ! Ax

@f(x,A)

@A
= xx

!

@f(x,A)

@x
= (A> +A)x

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f (x1, x2, x3) =

!

i

xi

expression:

graph:

variable names are just labelings of node s.

Algorithms
• Graph construction

• Forward propagation

¥ Loop over nodes in topological orde r

¥ Compute the value of the node give n its inputs

¥ Given my inputs, make a prediction (or compute an ÒerrorÓ with respect to a Òtarget
outputÓ)

• Backward propagation

¥ Loop over the nodes in reverse topological order starting with a Þnal goal node

¥ Compute derivatives of Þnal goal node value with respect to each edgeÕs tail
node

¥ How does the output change if I make a small change to the inputs?

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

x

>

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

x

>

x ! A

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

x

>

x ! A

b · x

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

x

>

x ! A

b · x

x

>
Ax

Forward Propagation

x

f (u) = u!

A

f (U , V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f (x1, x2, x3) =
!

i

xi
graph:

x

>

x ! A

b · x

x

>
Ax

Forward Propagation

x! Ax + b áx + c

The MLP

h = tanh(Wx+ b)

y = Vh+ a

The MLP

h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

Constructing Graphs

Two Software Models
• Static declaration

¥ Phase 1: deÞne an architecture 
(maybe with some primitive ßow control like loops and
conditionals)

¥ Phase 2: run a bunch of data through it to train the
model and/or make pre dictions

• Dynamic declaration

¥ Graph is deÞned implicitly (e.g., using operator
overloading) as the forward computation is execute d

Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.

Static Declaration
• Pros

¥ Ofßine optimization/scheduling of graphs is powe rful

¥ Limits on operations mean better hardware support

• Cons

¥ Structured data (even simple stuff like sequences), even variable-
sized data, is ugly

¥ You effectively learn a new programming language (Òthe Graph
LanguageÓ) and you write programs in that language to process data.

¥ examples: Torch, Theano, TensorFlow

Dynamic Declaration
• Pros

¥ library is less invasive

¥ the forward computation is written in your favorite programming
language with all its features, using your favorite algorithms

¥ interleave construction and evaluation of the graph

• Cons

¥ little time for graph optimization

¥ if the graph is static, effort can be waste d

¥ examples: Chainer, most automatic differentiation libraries, DyNet

Dynamic Structure?
¥ Hierarchical structures exist in language

¥ We might want to let the network reßect that hierarchy

¥ Hierarchical structure is easiest to process with
traditional ßow-control mechanisms in your favorite
languages

¥ Combinatorial algorithms (e.g., dynamic programming)

¥ Exploit independencies to compute over a large
space of ope rations tractably

