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Computation Graphs
• The descriptive language of deep learning models 

• Functional description of the required computation 

• Can be instantiated to do two types of computation: 

• Forward computation 

• Backward computation
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An edge represents a function argument  
(and also data dependency). They are just  
pointers to nodes.
A node with an incoming edge is a function of 
that edge’s tail node.
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Functions can be nullary, unary,  
binary, … n-ary. Often they are unary or binary.
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Computation graphs are directed and acyclic (usually)
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variable names are just labelings of nodes.



Algorithms
• Graph construction

• Forward propagation

• Loop over nodes in topological order 

• Compute the value of the node given its inputs 

• Given my inputs, make a prediction (or compute an “error” with respect to a “target 
output”) 

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node 

• Compute derivatives of final goal node value with respect to each edge’s tail 
node 

• How does the output change if I make a small change to the inputs?
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The MLP
h = tanh(Wx+ b)

y = Vh+ a



The MLP
h = tanh(Wx+ b)

y = Vh+ a
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Constructing Graphs



Two Software Models
• Static declaration

• Phase 1: define an architecture  
(maybe with some primitive flow control like loops and 
conditionals) 

• Phase 2: run a bunch of data through it to train the 
model and/or make predictions 

• Dynamic declaration

• Graph is defined implicitly (e.g., using operator 
overloading) as the forward computation is executed 



Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.



Static Declaration
• Pros

• Offline optimization/scheduling of graphs is powerful 

• Limits on operations mean better hardware support 

• Cons

• Structured data (even simple stuff like sequences), even variable-
sized data, is ugly  

• You effectively learn a new programming language (“the Graph 
Language”) and you write programs in that language to process data. 

• examples: Torch, Theano, TensorFlow



Dynamic Declaration
• Pros

• library is less invasive 

• the forward computation is written in your favorite programming 
language with all its features, using your favorite algorithms 

• interleave construction and evaluation of the graph 

• Cons

• little time for graph optimization 

• if the graph is static, effort can be wasted 

• examples: Chainer, most automatic differentiation libraries, DyNet



Dynamic Structure?
• Hierarchical structures exist in language 

• We might want to let the network reflect that hierarchy 

• Hierarchical structure is easiest to process with 
traditional flow-control mechanisms in your favorite 
languages 

• Combinatorial algorithms (e.g., dynamic programming) 

• Exploit independencies to compute over a large 
space of operations tractably


