
Computation Graphs

From Practical Neural Networks for NLP / Chris Dyer,
Yoav Goldberg, Graham Neubig / EMNLP 2016

CS5740: Natural Language Processing
Spring 2017

Instructor: Yoav Artzi

Computation Graphs
• The descriptive language of deep learning models

• Functional description of the required computation

• Can be instantiated to do two types of computation:

• Forward computation

• Backward computation

y = x

>
Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

y = x

>
Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument  
(and also data dependency). They are just  
pointers to nodes.
A node with an incoming edge is a function of
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,  
binary, … n-ary. Often they are unary or binary.

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (usually)

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x

>
Ax

@f(x,A)

@A
= xx

>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

Algorithms
• Graph construction

• Forward propagation

• Loop over nodes in topological order

• Compute the value of the node given its inputs

• Given my inputs, make a prediction (or compute an “error” with respect to a “target
output”)

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node

• Compute derivatives of final goal node value with respect to each edge’s tail
node

• How does the output change if I make a small change to the inputs?

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

x

>
Ax

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

x

>
Ax

Forward Propagation

x

>
Ax+ b · x+ c

The MLP
h = tanh(Wx+ b)

y = Vh+ a

The MLP
h = tanh(Wx+ b)

y = Vh+ a

x

f(M,v) = Mv

W

b

f(u,v) = u+ v
h

f(u) = tanh(u) V

a

f(M,v) = Mv

f(u,v) = u+ v

Constructing Graphs

Two Software Models
• Static declaration

• Phase 1: define an architecture  
(maybe with some primitive flow control like loops and
conditionals)

• Phase 2: run a bunch of data through it to train the
model and/or make predictions

• Dynamic declaration

• Graph is defined implicitly (e.g., using operator
overloading) as the forward computation is executed

Hierarchical Structure

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.

Static Declaration
• Pros

• Offline optimization/scheduling of graphs is powerful

• Limits on operations mean better hardware support

• Cons

• Structured data (even simple stuff like sequences), even variable-
sized data, is ugly

• You effectively learn a new programming language (“the Graph
Language”) and you write programs in that language to process data.

• examples: Torch, Theano, TensorFlow

Dynamic Declaration
• Pros

• library is less invasive

• the forward computation is written in your favorite programming
language with all its features, using your favorite algorithms

• interleave construction and evaluation of the graph

• Cons

• little time for graph optimization

• if the graph is static, effort can be wasted

• examples: Chainer, most automatic differentiation libraries, DyNet

Dynamic Structure?
• Hierarchical structures exist in language

• We might want to let the network reflect that hierarchy

• Hierarchical structure is easiest to process with
traditional flow-control mechanisms in your favorite
languages

• Combinatorial algorithms (e.g., dynamic programming)

• Exploit independencies to compute over a large
space of operations tractably

