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Interactive rendering with arbitrary BRDFs
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3 DOF: 2 detector, 1 source
Samples arranged on any desired grid

Full Gonioreflectometer

Straightforward 3D design

Full Gonioreflectometer

Alternate 3D design

3 DOF: 2 sample, 1 detector
Samples arranged on any desired grid

Incidence Plane

This conventional design…

2 DOF: 1 detector, 1 sample
Samples arranged on any desired grid



Image-based Incidence Plane

…is equivalent to this image-based design

2 DOF: 1 camera, 1 image
Samples arranged on predetermined curves

[Lu et al., AO ’98]
[Marschner et al.,

AO ’00]

3 DOF: 2 detector, 1 source
Samples arranged on any desired grid

Full Gonioreflectometer

This conventional design…

Image-based: Ward

…is equivalent to this image-based design

3 DOF: 2 image, 1 source (+1 sample)
Exitant directions fixed by optics; incident directions chosen

[Ward,

SG ’92]

Full Gonioreflectometer

This conventional design…

3 DOF: 2 sample, 1 detector
Samples arranged on any desired grid



Image-based: Marschner et al.

 

3 DOF: 2 image, 1 camera
Samples arranged on 2D sheets in 3D parameter space

…is equivalent to this image-based design

[Marschner et al.,

EGRW ’99; AO ’00]
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MIT BRDF database
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Figure 5: Pictures of 100 of our acquired materials.

5 Data Analysis

These sampled BRDFs can be used directly by a renderer. Sev-
eral examples of that are shown in Figure 6, where a teapot is ren-
dered under natural illumination using the raw acquired data. Our
ultimate goal, however, is to construct an empirical BRDF model
that can be used to generate novel, yet plausible, reflectance func-
tions directly from this database. We begin with the following as-
sumption: if we treat each of our BRDF samples as a high dimen-
sional vector in an abstract BRDF space, we expect that all physical
BRDFs lie upon a lower dimensional manifold within this space
indicative of their inherent dimensionality. This is a common as-
sumption used by others [Cula and Dana 2001] and it is consis-
tent with the relatively small number of parameters seen in analytic
BRDF models. Therefore, we breakdown the task of constructing
an empirical BRDF model into two phases: discovering this lower
dimensional model, and defining an interpolation scheme within
this lower-dimensional subspace.

5.1 Linear Analysis

In the case where the physical BRDF manifold lies on a linear sub-
space, the analysis tools for both manifold discovery and interpo-
lation are well known. In this case, Principal Component Analysis
(PCA)[Bishop 1995] effectively determines a set of basis vectors
that span the desired subspace, and linear combinations of sam-
ples can be used for interpolation. Linear manifold approaches
have proven extremely effective in some problem domains, such as
face synthesis [Blanz and Vetter 1999] and radiance interpolation
[Chen et al. 2002]. Potential linear manifolds are generally sug-
gested when there is a noticeable plateau in the magnitudes of the
sorted eigenvalues. When this plateau occurs on the kth eigenvalue,
we can model the data as a k-dimensional linear subspace with a
residual error bounded by the square root of the sum of the squares
of the remaining eigenvalues.

We began our analysis of the BRDF samples by searching for a
linear embedding manifold (a hyperplane). The three color chan-
nels of each BRDF sample were assembled into a column vector
and concatenated to form a 4,374,000 by 104 measurement vector
matrix X .

Figure 6: Rendered teapots using BRDFs from our database:
nickel, hematite, gold paint, and pink fabric.

Figure 7: Plot of the eigenvalues resulting from PCA of the data
set.

We perform the analysis in the log space (we apply the natural
logarithm to each element of vector X). There are several reasons
for this normalization. First, there is a huge difference (on the order
of a few magnitudes) between the specular and non-specular values
of the BRDF. If used in the original space, the analysis tools would
associate more importance to noise in the specular values than the
actual non-specular components. The linear analysis would depre-
ciate importance of these non-specular values (the non-specular val-
ues are perceptually important). Our operation is also justified by
the fact that the human visual system is sensitive to ratios rather
than absolute radiance values.

Singular value decomposition was then applied to X T X (a
104x104 matrix). The singular values in this case are the squares of
the desired eigenvalue magnitudes. A plot of these eigenvalues is
shown in Figure 7. We also show in Figure 8 the reconstruction of a
typical material using first 1, 5, 10, 20, 30, 45, 60, and all principal
components. We see that good reconstruction is usually obtained
using the first 30-40 components.

While there is a considerable fall off in the sequential values seen
in this plot, the plateau is reached around 45th eigenvalue (the re-
construction error is about 1% at that point). This dimension of
the embedding subspace is considerably higher than our intuition
would suggest, based on the typical number of parameters used in
analytic BRDF models. We verified that the 45-dimensional space
defined by the first principal components reconstructs all our mea-
sured BRDFs well. However, it spans a space that is bigger than the
space of all possible BRDFs. We are able to find the points in this

762

[Matusik et al. 2003] 
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Rusinkiewicz parameterization
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Figure 2: Proposed reparameterization of BRDFs. Instead of treating the BRDF as a
function of i, i and o, o , as shown on the left, we consider it to be a function of
the halfangle h, h and a difference angle d , d , as shown on the right. The vectors
marked n and t are the surface normal and tangent, respectively.

3.1 Properties of BRDFs in the New Coordinates

From the point of view of BRDF representation, the main effect of the proposed change of
variables is that it aligns the features of common BRDFs (such as specular and retroreflec-
tive peaks) with the new coordinate axes. Thus, representing most BRDFs in terms of basis
functions in these new coordinates should require a smaller number of nonzero coefficients
than would be required in the untransformed coordinates for equivalent accuracy. The
reason for this is that in the new coordinates the BRDFs show strong dependence on each
axis individually, but show only weak dependence on combinations of axes. That is, while
a BRDF might depend on h or d , most common BRDFs will not have a dependence
that is some complex function of both h and d . Therefore, coefficients that correspond
to terms that are high-frequency in both h and d will, for most BRDFs, be small. The
only large coefficients should be the ones that correspond to variation in only one axis.

Let us now examine how certain BRDFs appear in the transformed coordinates. First,
we note that isotropic BRDFs are independent of h in this coordinate system. This means
that an isotropic BRDF will have basis function coefficients equal to zero for all basis
functions that vary with h. Therefore, we have automatically reduced the number of
nonzero coefficients to a three-dimensional subset of the four-dimensional space. This
contrasts with the standard coordinates, where the entire four-dimensional space will be
populated with nonzero coefficients even in the case of an isotropic BRDF.

A second property of the new coordinates is that the angles of incidence and reflection
become much more symmetric. In particular, the condition of Helmholtz reciprocity be-
comes a simple symmetry under d d + . Is is therefore easy to enforce reciprocity in
any representation based on this change of variables.

Ideal specular and near-ideal specular peaks are transformed by the change of variables
to lie mostly along the h axis. An ideal specular peak is represented as a delta function of

h, and is completely independent of the other three variables. Similarly, a simple BRDF
such as Blinn’s variation [Blinn 77] on Phong’s model [Phong 75] is also a function of only

h. In general, any BRDF that depends only on n h is independent of three of the
four variables in the transformed space. In terms of representation, this means that only
a one-dimensional subset of the four-dimensional space of coefficients will be nonzero for
such a BRDF.

[Rusinkiewicz 1998] 

Lecture 7 •  Cornell CS569 Spring 2008 12

i = 10 i = 20 i = 40

The Cook-Torrance-Sparrow BRDF seen as a function of o, o , for various values of i, i .
Note that the position of the peak in space varies considerably.

d = 0 d = 20 d = 60

The Cook-Torrance-Sparrow BRDF seen as a function of h, h , for various values of d , d .
Note that although the size of the peak changes (as predicted by the Fresnel term), the position and
shape of the peak remain constant. The BRDF is therefore approximated very closely by a function
of the form = 1 h 2 d , which means that only a small number of basis function coefficients

will be nonzero.

Figure 3: Cook-Torrance-Sparrow BRDF in standard and transformed coordinates.

[Rusinkiewicz 1998] 
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i = 10 i = 20 i = 40

Ward’s elliptical Gaussian BRDF seen as a function of o, o , for various values of i , i .

d = 0 d = 20 d = 60

Ward’s elliptical Gaussian BRDF seen as a function of h, h , for various values of d , d . The
BRDF is very closely approximated by a function of the form = 1 h 2 h .

Figure 5: Elliptical Gaussian BRDF in standard and transformed coordinates.

[Rusinkiewicz 1998] 
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[Marschner 1998] 
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Fig. 1. Reparameterization can improve the
performance of decomposition. In this case the
SVD would result in a perfect single-term re-
construction. The ND algorithm used in this
figure results in a blurrier reconstruction.

Fig. 2. Surface coordinate system used to pa-
rameterize a BRDF. The surface normal is n,
the primary surface tangent is t, and s is the
secondary surface tangent perpendicular to n

and t.

We have not found a single parameterization that works well for all BRDFs, al-
though we have found parameterizations that work well for broad categories of BRDFs.
This is to be expected due to the different surface phenomena that contribute to varia-
tion in reflectance, as shown in Figure 3. Each of these phenomenon aligns the features
the BRDF along different axes. We will show examples of these tradeoffs in Figure 5.

B: Subsurface Scattering C: Deep MicrogeometryA: Microfacets

Example: rough metal Example: human skin Example: velvet

Fig. 3. Surface phenomena that contribute to BRDFs.

5.1 BRDF Parameterization

The standard parameterization of a BRDF is with respect to the incident direction
and viewing direction relative to a local surface frame at x. A unit length vector a
can be expressed in spherical coordinates a a relative to the local surface frame

n t s (see Figure 2) as follows:

a n a

a s a t a

Let , , and .

6

[Kautz & McCool 1999] 

Separable approximation
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Figure 12: HTSG copper, Poulin/Fournier’s brushed metal, Lafortune/Willems’ modified Phong, measured
velvet, measured peacock feather, and measured grey vinyl.

Figure 13: Diffuse texture maps can be added to single-term separable decompositions for the specular

highlight. Left to right: Ward’s anisotropic BRDF; Ward’s anisotropic BRDF (oriented orthogonally to the

first example); (measured) varnished wood.

15

Separable BRDF factorization

[Kautz & McCool 1999] 
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CUReT BTF datbase
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Fig. 7. The collection of 61 real-world surfaces used in the measurements. The name and
number of each sample is indicated above its image. The samples were chosen to span a wide
range of geometric and photometric properties. Different samples of the same type of surfaces
are denoted by letters, for example, Brick_a and Brick_b. Samples 29, 30, 31, and 32 are
close-up views of samples 2, 11, 12, and 14, respectively.

Reflectance and Texture • 9

ACM Transactions on Graphics, Vol. 18, No. 1, January 1999.

[Dana et al. 1999] 
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CUReT BTF database

18Fig. 7. The collection of 61 real-world surfaces used in the measurements. The name and
number of each sample is indicated above its image. The samples were chosen to span a wide
range of geometric and photometric properties. Different samples of the same type of surfaces
are denoted by letters, for example, Brick_a and Brick_b. Samples 29, 30, 31, and 32 are
close-up views of samples 2, 11, 12, and 14, respectively.

Reflectance and Texture • 9

ACM Transactions on Graphics, Vol. 18, No. 1, January 1999.

[Dana et al. 1999] 
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Fig. 12. Cylinders rendered with 2-D texture-mapping (left) and 3-D texture-mapping (right).
From top to bottom, the samples rendered are Sample 28 (crumpled paper), Sample 19 (plush
rug), and Sample 56 (wood).

Reflectance and Texture • 17

ACM Transactions on Graphics, Vol. 18, No. 1, January 1999.

Rendering using BTF
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These rendered cylinders demonstrate the potential of 3-D texture-
mapping, but there are many unresolved issues. For instance, interpolation
must be done between measured BTF images. Also, seams become a
problem when the sizes of the characteristic texture elements become large

Fig. 11. Cylinders rendered with 2-D texture-mapping (left) and 3-D texture-mapping (right).
From top to bottom, the samples rendered are Sample 11 (plaster), Sample 8 (pebbles), and
Sample 45 (concrete).

16 • K. J. Dana et al.

ACM Transactions on Graphics, Vol. 18, No. 1, January 1999.
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ACM Transactions on Graphics, Vol. 18, No. 1, January 1999.
[Dana et al. 1999] 


