Interactive rendering with arbitrary BRDFs

Full Gonioreflectometer

Straightforward 3D design

Incidence Plane

This conventional design...

2 DOF: 1 detector, 1 sample
Samples arranged on any desired grid

Image-based Incidence Plane

...is equivalent to this image-based design
[Lu et al., AO '98]
[Marschner et al.,
AO '00]

2 DOF: 1 camera, 1 image
Samples arranged on predetermined curves

Full Gonioreflectometer

This conventional design...

Full Gonioreflectometer

This conventional design..

3 DOF: 2 sample, 1 detector
Samples arranged on any desired grid

Image-based: Marschner et al.

...is equivalent to this image-based design
[Marschner et al., EGRW '99; AO '00]

MIT BRDF database

$\theta_{d}=20^{\circ}$

The Cook-Torrance-Sparrow BRDF seen as a function of $\left(\theta_{b}, \phi_{b}\right)$, for various values of $\left(\theta_{d}, \phi_{d}\right)$. Note that although the size of the peak changes (as predicted by the Fresnel term), the position and
shape of the peak remain constant. The BRDF is therefore approximated very closely by a function shape of the peak remain constant. The BRDF is therefore approximated very losely by a function
of the form $\beta=\beta_{1}\left(\theta_{n}\right) \beta_{2}\left(\theta_{d}\right)$, which means that only a small number of basis function coefficients

