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Color Plate 1.  An original image. Plates 1-8 are 640x480 pixels.
Color Plate 2.  Processed image using no brush stroke clipping and 

a constant base stroke orientation of 45°.

Color Plate 3. Technique of Color Plate 2 is modified so that

brush strokes are cliped to edges detected in the original image.
Color Plate 4.  Technique of Color Plate 3 is modified to orient

strokes using a gradient-based technique.

Color Plate 5.  Technique of Color Plate 4 is modified such that regions with 

vanishing gradient magnitude are interpolated from surrounding regions.
Color Plate 6.  Image produced using larger brush stroke radii

and lengths.

Color Plate 7.  Brush stroke textures are used.  Lower right corner

shows basic brush intensity and alpha. Color Plate 8.  Another brush stroke texture is demonstrated.

Color Plate 1.  An original image. Plates 1-8 are 640x480 pixels.
Color Plate 2.  Processed image using no brush stroke clipping and 

a constant base stroke orientation of 45°.

Color Plate 3. Technique of Color Plate 2 is modified so that

brush strokes are cliped to edges detected in the original image.
Color Plate 4.  Technique of Color Plate 3 is modified to orient

strokes using a gradient-based technique.

Color Plate 5.  Technique of Color Plate 4 is modified such that regions with 

vanishing gradient magnitude are interpolated from surrounding regions.
Color Plate 6.  Image produced using larger brush stroke radii

and lengths.

Color Plate 7.  Brush stroke textures are used.  Lower right corner

shows basic brush intensity and alpha. Color Plate 8.  Another brush stroke texture is demonstrated.

Litwinowicz 1997 
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Figure 9: Top: Colored Phong-shaded spheres with edge lines and highlights. Bottom: Colored spheres shaded with hue and luminance
shift, including edge lines and highlights. Note: In the first Phong shaded sphere (violet), the edge lines disappear, but are visible in the
corresponding hue and luminance shaded violet sphere. In the last Phong shaded sphere (white), the highlight vanishes, but is noticed in the
corresponding hue and luminance shaded white sphere below it. The spheres in the second row also retain their “color name”.

Figure 10: Left to Right: a) Phong shaded object. b) New metal-shaded object without edge lines. c) New metal-shaded object with edge
lines. d) New metal-shaded object with a cool-to-warm shift.

Figure 11: Left to Right: a) Phong model for colored object. b) New shading model with highlights, cool-to-warm hue shift, and without
edge lines. c) New model using edge lines, highlights, and cool-to-warm hue shift. d) Approximation using conventional Phong shading, two
colored lights, and edge lines.

Gooch et al. 1997 
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Figure 6: Indicating texture. The left house is drawn using “indication”; the right house is not.

information present for driving the ordinary graphics pipeline
is in many respects also sufficient for achieving important non-
photorealistic effects.

• Introducing the concept of a “prioritized stroke texture,” a general
framework for creating textures from strokes, and providing a
methodology for building procedural versions of these textures.

• Allowing a form of resolution-dependent rendering, in which the
choice of strokes used in an illustration is appropriately tied to
the resolution of the target medium.

However, the work described in this paper is just one early step in the
exploration of automated non-photorealistic rendering algorithms.
There are many ways to extend this work, including:

• Improving the procedural stroke textures, and automating further
our methods for creating them.

• Incorporating other illustration effects, such as exploded, cut-
away, and peel-back views, for showing parts that are hidden.

• Adding more interactive controls to help in designing 3D illus-
trations. Also, experimenting with very high-level controls—for

Figure 7: Indicating texture through outline. Notice how different
textures are delineated with different styles of boundary outlines.
The upper and lower illustrations are the same, except that all but the
boundary outline textures have been removed in the upper illustration
to present the different styles more clearly.

example, a control to add emphasis to parts of an illustration,
which would work by automatically accentuating and suppress-
ing detail over different parts of the image.

• Rendering other natural forms that appear in architectural draw-
ings (and for which established conventions also exist), such as
trees, grass, water, human figures, etc.

• Rendering other types of databases besides architectural models,
such as databases of mechanical parts. Also, applying traditional
illustration techniques and principles to databases that are not
inherently visual in nature, such as flow simulations or higher-
dimensional datasets. (This variety of rendering could be thought
of as a form of scientific visualization.)

• Creating animations. Because our system uses randomness pro-
fusely, issues in frame-to-frame coherence arise. For instance,
large features that are random, such as the selection of bricks that
are shaded, should not vary from frame to frame. However, more
subtle features, such as the waviness of strokes used to give the
hand-drawn appearance, should be allowed to waver [15].

• Exploring other forms of illustration besides pen-and-ink, includ-
ing traditional forms like watercolor and air brushing, as well as
newmethods of conveying information visually that may not nec-
essarily mimic traditional forms.
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terization, which make our approach more general than previously
developed techniques.

Rendering style. We have developed a new non-photorealistic ren-
dering style based on the techniques of Francis [15], and influenced
by the cartoons of Thomas Nast [34] and others.

The rules for drawing in this style are described in Section 6.

2 Previous Work

The methods used in nonphotorealistic rendering can be separated
into two groups: image-space and object-space. The image-based
approach is general and simple; however, it is not particularly suit-
able for generating concise line drawings of untextured smooth sur-
faces. Image-based techniques are presented in [5, 30, 7, 18, 6, 28];
these algorithms exploit graphics hardware to produce image preci-
sion silhouette images. Our technique is an object space method; it
directly uses the 3D representation of objects, rather than their im-
ages. Winkenbach and Salesin [36] describe a method for produc-
ing appealing pen-and-ink renderings of smooth surfaces. Paramet-
ric lines on NURBS patches were used to determine the hatch direc-
tions and silhouette lines were computed using polyhedral approx-
imation to the surface. Their main technical focus is on using the
hatch density to render complex texture and lighting effects. Their
system relied on a surface parameterization to produce hatch di-
rections; however, such a parameterization does not exist for many
types of surfaces, and can often be a poor indicator of shape when
it does exist. Elber [12, 13] and Interrante [21] used principal cur-
vature directions for hatching. Curvatures generally provide good
hatch directions, but cannot be reliably or uniquely computed at
many points on a surface. Our system makes use of the principle
curvature directions, and uses an optimization technique to “fill in”
the hatching field where it is poorly-defined. Deussen et al. [9] use
intersections of the surfaces with planes; while being quite flexible,
this approach requires segmentation of the surface into parts, where
different groups of planes are used; the plane orientations computed
using skeletons relate only indirectly to the local surface properties.

Our work also draws on techniques developed for vector field vi-
sualization [8, 22]. It should be noted that relatively little work has
been done on generating fields on surfaces as opposed to visualiza-
tion of existing fields. Elber [12, 13] discuses the relative merits
of some commonly-used hatching fields (principle curvature direc-
tions, field of tangents to the isoparametric lines, the gradient field
of the brightness).

Silhouette detection is an important component of many non-
photorealistic rendering systems. Markosian et al. [25] presented
a randomized algorithm for locating silhouettes; this system is fast
but does not guarantee that all silhouettes will be found. Gooch et
al. [18] and Benichou and Elber [3] proposed the use of a Gauss
map to efficiently locate all object silhouettes under orthographic
projection. In this paper, we present a new method for silhouette
detection that is fast, deterministic, and applicable to both ortho-
graphic and perspective projection.

Our method for computing the silhouette lines of free-form sur-
faces is closely related to the work of [14, 17] in computing silhou-
ettes for NURBS surfaces.

3 Overview

In this section we present a general overview of our algorithms.

Surface representation. The input data for our system is a polyg-
onal mesh that approximates a smooth surface. Polygonal meshes
remain the most common and flexible form for approximating sur-
faces. However, information about differential quantities (normals,
curvatures, etc.) associated with the original surface is lost. We
need a way to estimate these quantities and compute, if necessary,
finer approximations to the original smooth surface. This can be

Figure 2: Klein bottle. Lighting and hatch directions are chosen to
convey surface shape. Undercuts and Mach bands near the hole and
the self-intersection enhance contrast.

done if we choose a method that allows us to construct a smooth
surface from an approximating arbitrary polygonal mesh, and easily
compute the associated differential quantities (normals, curvatures,
etc.).

We use piecewise-smooth subdivision, similar to the algorithms
presented in [20], with an important modification (Appendix A) to
make the curvature well-defined and nonzero at extraordinary ver-
tices. However, other ways of defining smooth surfaces based on
polygonal meshes can be used, provided that all the necessary quan-
tities can be computed.

Algorithms. Our rendering technique has three main stages: com-
putation of a direction field on the surface, computation of the sil-
houette lines and generation of hatch lines.

Hatch direction field. This stage defines a view-independent field
on the surface that can be used later to generate hatches. Rather than
defining two separate directional fields, we define a single cross
field (Section 5) for hatches and cross-hatches. The main steps of
our algorithm are: smooth the surface if necessary; compute an
initial approximation to the field in areas of the surface where it is
well defined, initialize the directions arbitrarily elsewhere; optimize
the directions in places where the cross field was not well defined.

Silhouette curve computation. We compute the curves in several
steps (Section 4): compute boundary, self-intersection and crease
curves, as well as boundaries of flat areas; compute silhouette
curves as zero-crossings of the dot product of the normal with the
view direction; find cusps, determine visibility, and segment the sil-
houette curves into smooth pieces.

Hatch generation. Our hatch generation algorithms follow some
of the rules described by Francis [15] (Section 6). The surface is
divided into four levels of brightness with corresponding levels of
hatching: highlights and Mach bands (no hatching), midtones (sin-
gle hatching), shadowed regions (cross-hatching), and undercuts
(dense cross-hatching). Line thickness varies within each region
according to the lighting. Undercuts and Mach bands are used to
increase contrast where objects overlap. Lights are placed at the
view position or to the side of the object. The hatching algorithm
covers all hatch regions with cross-hatches, then removes hatches
from the single hatch regions as necessary.

4 Computing Silhouette Drawings

In this section we describe algorithms for generating the simplest
line drawings of smooth surfaces, which we call silhouette draw-
ings. A silhouette drawing includes only the images of the most
visually important curves on the surface: boundaries, creases, sil-
houette lines and self-intersection lines. Finding intersections of

Hertzmann & Zorin
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Figure 8 Hat and cane. Both the hat and the cane are modeled with B-spline surfaces. The ribbon is modeled as a separate B-spline surface.

Note the curved shadow that the hat projects on its rim, and the use of crosshatching on the curved portion of the cane.
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A Deriving the stretching factor

To derive the expression for the stretching factor , given in equa-
tion (1), we first note that the linear transformation maps points

in parameter space to points in image space by

(3)

Next, we write the implicit equations for line and its image ,
using the implicit-form coefficients for , and
for :

(4)

Combining equations (3) and (4), we readily establish that

(5)

The distance between two parallel lines with implicit-form coeffi-

cients and is . The stretching
factor is given by the inverse ratio of the distance between the
lines and , and the distance between their images
and :

476

Winkenbach & Salesin 1996
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~ Computer Graphics, Volume 24, Number 4, August 1990 

2) darkness of extracted lines depends on the degree of 

gaps. 

Furthermore, second order differential operators have one 

more artifact: 

3) 0-th order discontinuities are extracted as double (neg- 

ative and positive) lines. 

These undesirable artifacts can be corrected using the 

minimum and maximum of neighboring differential values. 

An example of the normalization operator is as follows: 

/ 9 ~ , . - g )  ( g ~ a ~ - - g m ~ .  > kg)  ( g,.,~== - -g ,~ , i  . ) 

P = ¢ ~ ' " - ~ )  (gmo~ - gm~.  < =  k s ) ,  (3 )  
kg 

where g is the gradient value of a pixel, grnax  and g r a i n  are 

the maximum and minimum gradient values in the 3 ! 3 

neighboring pixels, and p is the normalized value. The 

constant k a distinguishes discontinuities from continuous 

changes; its value depends on the object. Equation (3) can 

almost correct artifacts (1) and (2) of gradient images. For 

discontinuities of first order differential, Eq.(3) can be ap- 

plied to second order differential images with simple mod- 

ifications. For artifact (3), the following operation can be 

applied: 

1 ( g m o ~  < =  kz) 
e = t (gma= > kt), (4) 

(g,~°=/kt) ~ 

where l is the second order differential value of a pixel, and 

e is the corrected value. The constant kt is the limit of 

gradient for the elimination of O-th order discontinuities. 

3.2 D r a w i n g  E d g e s  

The most significant application of drawing discontinuity is 

edge drawing. Here, e d g e  has the two following meanings: 

• p r o f i l e  - -  the border line of an object on the screen; 

• i n t e r n a l  e d g e  - -  a line where two faces meet. 

Profiles and edges are the 0-th and first order discontinuities 

of the depth image (sz image) respectively, thus the oper- 

ations described in Subsection 3.1 can be simply applied. 

Edges can be drawn stably with 2-D image processing op- 

erators even for complicated free-form surfaces. 

When an image is synthesized by perspective projec- 

tion, the projection must be performed to depth values. In 

this c a s e ,  the general relation between the depth in the eye 

coordinate z, and that in the screen coordinate z8 (perspec- 

tive depth) is as follows [16]: 

Z 
z ,  = ~ + - - .  (5 )  

Zv 

With Eq.(5), linearity of depth values on the screen is en- 

sured. However, we recommend the following equation: 

d 2 
z ,  - , (6 )  

Wgv 

where d is the distance between the view point and the 

screen, and w is one pixel length on the screen in eye coor- 

dinate (Fig.2). The advantage of Eq.(6) is that equalizes the 

gradient value of depth image with the slope of the surface. 

An example is shown in Fig.3. The depth image of a 

machine nut, its first and second order differential images, 

and corrected profile and internal edge images are presented. 

The normalization of the profile image was performed by 

using Eq.(3) with k 9 = 10. The correction of the internal 

edge was realized by using Eq.(4) with k~ = 2. However, the 

artifacts (1) and (2) in Subsection 3.1 are not normalized 

for the internal edge image; the sign of an internal edge 

indicates its convexity, and the strength corresponds to its 

sharpness. 

Note that edges can also be extracted by using the ob- 

ject/patch identifier (id image). This method is simple, but 

not complete for concave curved surfaces. To draw edges 

exactly, it is possible to combine the two methods. 

wl 

0 

scr~n object 

d zv z 

Fig.2 Perspective depth. 

depth image 

1st order differential 2st order differential 

profile image internal edge image 

Fig.3 An example of edge drawing. 
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O SIGGRAPH '90, Dallas, August 6-10, 1990 

(a) shaded image (b) depth image 

(c) edge image (1) (d) enhanced image (1) 
Fig.8 Edge enhancement of reflected objects. 

(c') edge image (2) (d') enhanced image (2) 

Fig.7 Two examples of edge enhancement. 

(sh) (shy) 
Fig.10 Image quality through a copy machine. 
Original pictures in Fig.9 were copied five times :-~ 

(nx) ~\ .  

(ny) /)--~ 

(nz) y 
shaded 

/ 
z 

/ • 

~.  /J  j j~/ 
(sz) ~ profile 

(ou) ~ J J -  

(ov)~ "'jj 
curved hatching 

- . . . . . . .  

/ . / "  

) /  ~" / 
j ~  

J final illustrations 
(cv 

(shu) 

(shv) 

(shuv) 

G-Buffers 
Fig.9 Process of drawing illustrations. 

202 

Saito & Takahashi 90



Lecture 16 •  Cornell CS569 Spring 2008

Discontinuities in depth and normals

9

Introduction to 3D Non-Photorealistic Rendering: Silhouettes and Outlines

(a)

(c)

(b)

(d)
(e)

(f)

(g)

Figure 1: Outline drawing with image processing. (a) Depth map. (b) Edges of the depth map. (c)

Normal map. (d) Edges of the normal map. (e) The combined edge images. (f) A difficult case:

folded piece of paper (g) Depth edges. (See also the Color Plates section of the course notes.)

2.1.3 Other Types of Textures

We can generalize the above methods to render the image with any smoothly-varying surface

function, and then detect edges in the resulting image. For example, we can texture-map the

object with a smooth image. However, special care must be taken if the texture map is repeated on

the surface [4]. Different methods, such as environment map textures and volumetric textures, can

be explored for locating different classes of object lines.

2.2 Rendering

If we intend simply to render the image as dark lines, then these edge images are sufficient. If

we wish to render the silhouettes as curves with some kind of attributes, such as paint texture or

varying thickness, or if we wish to modify the line qualities, then we must somehow extract curves

from the edge map. Methods for doing this are described by Curtis [5] and Corrêa et al. [4]. Saito

and Takahashi [18] also discuss some heuristics for modifying the appearance of the edge images.

For many applications, the techniques described in this section are sufficient. However, they

do suffer the fundamental limitation that important information about the 3D scene is discarded

during rendering, and this information cannot be reconstructed from the 2D image alone. For

example, a highly foreshortened surface will appear to be discontinuous. This means that you must

manually tweak the image processing parameters for each model and scene. Furthermore, there

Non-Photorealistic Rendering 7-3

Hertzmann course notes 1999
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O SIGGRAPH '90, Dallas, August 6-10, 1990 

(a) shaded image (b) depth image 

(c) edge image (1) (d) enhanced image (1) 
Fig.8 Edge enhancement of reflected objects. 

(c') edge image (2) (d') enhanced image (2) 

Fig.7 Two examples of edge enhancement. 

(sh) (shy) 
Fig.10 Image quality through a copy machine. 
Original pictures in Fig.9 were copied five times :-~ 
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Fig.9 Process of drawing illustrations. 
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silhouette
 point

curve

viewpoint

dual
curve

2

1

3

1 2 3

project

Figure 6: Left: Using a dual curve to find silhouette points. The
figure shows a curve in the plane z = 1 and its dual on a sphere.
The blue arrow is the vector c from the origin in 3D to the viewpoint
in the plane, the blue circle is the intersection of the plane passing
through the origin perpendicular to c with the unit sphere. The red
points are a silhouette point and its dual. The silhouette point can be
found by intersecting the blue circle with the dual curve and retriev-
ing corresponding point on the original curve. Right: Reducing the
intersection problem to planar subproblems. The upper hemisphere
containing the dual curve is projected on the surface of cube and at
most 5 (in this case 3) planar curve-line intersection problems are
solved on the faces.

Figure 7: Silhouette lines under the duality map correspond to the
intersection curve of a plane with the dual surface. Top: Torus
shown from camera and side views. Bottom: The eight 3D faces of
the hypercube, seven of which contain portions of the dual surface.
The viewpoint dual is shown as a blue plane. Silhouettes occur at
the intersection of the dual plane with the dual surface.

intersection of the dual surface with the plane corresponding to the
viewpoint. The second part is fairly standard, so we focus on the
first part.

Step 1: For each vertex p with normal n, we compute the dual
position N = [n1, n2, n3,−(p · n)]. The dual positions define
the dual mesh which has different vertex positions but the same
connectivity.
Step 2: Normalize each dual position N using l∞-norm, that is,
divide by max(|N1|, |N2|, |N3|, |N4|). After division, at least one
of the components Ni, i = 1..4, becomes 1 or -1. The resulting
four-dimensional point is on the surface of the unit hypercube. The
three-dimensional face of the cube on which the vertex is located is
determined by the index and sign of the maximal component.
Step 3: Each triangle of the dual mesh is assigned to a list for every
three-dimensional face in which it has a vertex.
Step 4: An octtree is constructed for each three-dimensional face,
and the triangles assigned to this face are placed into the octtree.

The second step of the algorithm, which is repeated for each
frame, uses the octtree to find the silhouette edges for a given cam-
era position by intersecting the dual plane with the dual surface.

We have implemented an interactive silhouette viewer based on
the dual space method. In our tests, silhouette tests were performed

on twice as many triangles as there were actual triangles contain-
ing silhouettes, suggesting that performance is roughly linear in
the number of silhouette triangles. This represents a substantial
speedup over traversing the entire mesh. Silhouette edge detec-
tion and visibility calculations on the three-times subdivided Venus
model (∼90,000 triangles) can be performed at approximately 17
frames per second on a 225 MHz SGI Octane, without using graph-
ics hardware, which is similar to the performance of the nondeter-
ministic algorithm of [25].

4.4 Visibility

Before computing visibility, we separate the silhouette curves into
segments. Visibility is determined for each segment. The follow-
ing points are used to separate segments: cusps, silhouette-feature
joints, and inverse images of silhouette-feature and silhouette-
silhouette intersections in image space. Visibility can change only
at these points, thus each segment is either completely visible or
invisible.

Determining visibility is fundamentally difficult for smooth sur-
faces, because it cannot be inferred precisely from visibility of the
approximating mesh. Our algorithm can only guarantee that the
correct visibility will be produced if the mesh is sufficiently fine, us-
ing a theoretically-estimated required degree of refinement. How-
ever, the estimate is too conservative and difficult to compute to
be practical; in our implementation, we refine the mesh to a fixed
subdivision level.

Our visibility algorithm is based on the following observation: at
any area on the surface, the rate of change of the normal is bounded
by the maximal directional curvature. For a sufficiently fine triangu-
lation, one can guarantee that for any triangle for which (n·(p−c))
changes sign, there is a silhouette edge of the polygonal approxi-
mation adjacent to a vertex of the triangle. We use the visibility
of these edges to compute visibility of the silhouette curves. The
visibility of the silhouette edges can be determined using known
techniques (e.g. [25]).

For each curve we find visibility of all nearby silhouette edges
(which is not necessarily consistent) and use the visibility of the
majority of the edges to determine visibility of the chain. It is pos-
sible to show that this method will produce correct visibility for
sufficiently fine meshes in the following sense: there is a smooth
surface for which the precise projection has the same topology as
the one computed by our method.

In practice, we have found that the algorithm performs well even
without extra refinement near the silhouettes, provided that the orig-
inal mesh is sufficiently close to the surface. An efficient algorithm
with better-defined properties would be useful.

5 Direction Fields on Surfaces

Fields on surfaces. To generate hatches, we need to choose sev-
eral direction fields on visible parts of the surface. The direction
fields are different from the more commonly used vector fields: un-
like a vector field, a direction field does not have a magnitude and
does not distinguish between the two possible orientations.

The fields can either be defined directly in the image plane as
in [31], or defined on the surface and then projected. The advan-
tage of the former method is that the field needs to be defined and
continuous only in each separate area of the image. However, it is
somewhat more difficult to use the information about the shape of
the objects when constructing the field, and the field must be re-
computed for each image. We choose to generate the field on the
surface first.

A number of different fields on surfaces have been used to define
hatching directions. The most commonly-used field is probably the
field of isoparametric lines; this method has obvious limitations,

(a) (b) (c)

(d) (e)

Figure 4: (a) Silhouette edges of a polygonal approximation pro-
duce jagged silhouette curves. (b) Our method produces smooth
silhouette curves by inferring information about the smooth surface
from the polygonal mesh. (c) The same curves shown from another
viewpoint and overlayed. (d) A complex cusp occurs in the polyg-
onal approximation when the surface is nearly parallel to the view
direction. This does not occur in the smooth silhouette curve. (e)
Smooth line drawing of the “smiling torus.” The red box shows the
location of the curves in (a)-(c).

tangents of the silhouette curves; cusps are the points where the tan-
gent is parallel to the view direction. However, this approach is not
numerically reliable, especially if the silhouette curves are approx-
imated by polylines. We propose a new, numerically more robust
way to find the cusps, using the following geometric observations.

Consider a silhouette point p with principal curvature directions
w1 and w2 and principal curvatures κ1 and κ2. Let c be the
viewpoint; since p is the silhouette point, the viewing direction
v = c − p is in the tangent plane. Let [c1, c2, 0] be the compo-
nents of c with respect to the coordinates (r, s, t) associated with
the principal curvature directions, computed by c1 = (v · w1) and
c2 = (v·w2). As we have observed, p is a cusp when the tangent to
the silhouette at p is parallel to the viewing direction v. The tangent
to the silhouette can easily be expressed in terms of curvature. Ap-
proximation (1) yields the following approximation to the normals
in a small neighborhood near p: n(r, s) = [−2κ1r,−2κ2s, 1].
The equation of the 2nd order approximation to the silhouette curve
is an implicit quadratic equation, g(r, s) = (n(r, s) · v(r, s)) = 0,
where v(r, s) is the viewing direction c − p(r, s) = [c1 − r, c2 −
s,−κ1r

2 − κ2s
2]. We calculate the vector perpendicular to the

silhouette at p as ∇g(0, 0) = [−2κ1c1,−2κ2c2]. The resulting
condition for the viewing direction to be parallel to the silhouette
tangent (or, equivalently, perpendicular to ∇g(0, 0)) to the view-
ing direction is κ1c

2
1 + κ2c

2
2 = 0. Therefore, we can define a

parameterization-independent scalar function on the surface which
we call the cusp function:

C(p) = κ1 (v · w1)
2 + κ2 (v · w2)

2

where all quantities are evaluated at point p. This function has the
following important property: cusps are contained in the intersec-
tion set of the two families of curves: one obtained as the zero set
of the function g(p), the other as the zero set of the cusp function
C(p) (Figure 5). The zero set of C(p) can be approximated in
the same way as the zero set of g(p); each triangle of the polygo-
nal mesh may contain a single line segment approximating the zero
set of C(p) and another approximating the zero set of g(p). This
allows us to compute approximate cusp locations robustly, without
introducing many spurious cusps, and at the same time using rela-
tively coarse polygonal approximations to the smooth surface.

Figure 5: Left: Cusps are found as intersections of zero sets of
two functions defined on the surface, the dot product of the normal
with the viewing direction and the cusp function. The silhouette
curve is shown in blue, the cusp zero set in red. Right: The same
curves; view from a viewpoint different from the one that was used
to compute the curves.

4.3 Fast Silhouette Detection

In the previous section, we have presented an algorithm for con-
structing approximations to the silhouette curves which, when im-
plemented in the simplest way, requires complete traversal of the
mesh. Such a traversal is unnecessary; typically, only a small per-
centage of mesh faces contain silhouettes [25, 23]. For polygo-
nal meshes, a number of fast techniques were developed that allow
one to avoid complete traversal. A stochastic algorithm was pro-
posed in [25]. A deterministic algorithm based on the Gauss map
was proposed in [3, 18], but is restricted to orthographic projection.
We present a new deterministic algorithm for accelerated location
of silhouettes, which works for both orthographic and perspective
projection. This algorithm is equally suitable for finding silhouettes
defined as zero sets, and for finding silhouette edges of polygonal
meshes.

Our algorithm is based on the concept of dual surfaces. The
points of the dual surface M ′ are the images of the tangent planes
to a surface M under a duality map, which maps each plane
Ax + By + Cz + D = 0 to the homogeneous point [A, B, C, D].
More explicitly, M ′ can be obtained by mapping each point of
M to a homogeneous point N = [n1, n2, n3,−(p · n)], where
n = [n1, n2, n3, 0] is the unit normal at p. Note that the inverse
is also true: each plane in the dual space corresponds to a point in
the primal space. Let C = [c1, c2, c3, c4] be our viewpoint in the
homogeneous form. Then the silhouette of the surface consists of
all points p for which C is in the tangent plane at that point. For
perspective projection, this means that (C ·N) = (c−p) ·n = 0.
For orthographic projection, the homogeneous formula is the same:
(C ·N) = (c ·n) = 0, where c is interpreted as the view direction.
Our algorithm is based on the following observation: the image of
the silhouette set of the surface with respect to the viewpointC un-
der the duality map is the intersection of the plane (C · x) = 0,
with the dual surface. This fact allows us to reduce the problem of
finding the silhouette to the problem of intersecting a plane with a
surface (Figure 7), for which many space-partition-based accelera-
tion techniques are available. However, an additional complication
is introduced by the fact that some points of the dual surface may be
at infinity. This does not allow us to consider only the finite part of
the projective space, which can be identified withR3. However we
can identify the whole 3D projective space with points of the unit
hypersphere S3, or, equivalently, of the boundary of a hypercube,
in four-dimensional space. As four-dimensional space is somewhat
difficult to visualize, we show the idea of the algorithm on a 2D
example in Figure 6. In the 2D case, the problem is to compute all
silhouette points on a curve, that is, the points for which the tangent
line contains the viewpoint.

While the geometric background is somewhat abstract, the actual
algorithm is quite simple. The input to the algorithm is a polygonal
mesh, with normals specified at vertices, if we are computing sil-
houettes using zero-crossings. The normals are not necessary if we
are locating the silhouette edges of the polygonal mesh. There are
two parts to the algorithm: initialization of the spatial partition and
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(a) (b) (c)

Figure 1 Arrows indicate cusps. (a) A typical cusp. (b) A more
exotic cusp. (c) A border cusp (the two edges meeting at the center
of the sheet are border edges).

silhouette curves, so testing for changes in QI just at cusp vertices
provides a significant savings in computation time. 4

4.3 Avoiding ray tests

Next, we show how to avoid some of the ray tests required by Ap-
pel’s algorithm. First, if we assume that all objects in the scene are
completely in view of the camera, then any edge which touches the
2D bounding box (in image space) of all silhouettes does not re-
quire a ray test – it is automatically visible. Hence, no ray test is
required for any connected set (or cluster) of silhouette edges con-
taining such an edge.

Appel’s algorithm would now proceed with (1) a ray test to estab-
lish QI at some distinguished point on each cluster, followed by (2)
the propagation step in which QI is assigned to the remaining points
of each cluster. By reversing this order, we can sometimes eliminate
the need for a ray test altogether, since the second step is often suf-
ficient to determine that an entire silhouette curve is occluded. (See
figure 2).

!1

a
a
a(a) (b)

+1

(c)

+1
!1

Figure 2 (a) A surface: side view. (b) Smaller branch is in rear. (c)
Smaller branch is in front. The change in QI at cusps is indicated.

Traversing the inner silhouette in (b) is sufficient to determine that
the silhouette is totally occluded.

For each connected cluster of silhouette edges, we first choose an
edge and a point on it infinitesimally close to one of its vertices.
We call this point the base point of the cluster. Let b denote QI at
the base point. QI at all other points of the cluster will be defined
via offsets from b. We assign a preliminary lower-bound value of 0
to b. We then calculate the offsets with a graph search, taking into
account image space intersections of edges of the current cluster
with any silhouette edges, as well as cusp vertices encountered in
the traversal. (A curve’s QI increases by two when it passes behind
a silhouette, and may change by an arbitrary, locally measurable
amount at a cusp vertex). We record the minimum QI, m, encoun-
tered during the search. If m 0, we may safely increment b by
m. It’s easy to show that on a closed surface, front-facing silhou-

ette edgesmust have even QI and back-facing silhouette edgesmust

4Note that front-facing and back-facing silhouette edges (used in iden-

tifying cusps) can be detected according to whether the surface along the

edge is convexor concave; the convexity of each edge can be determined in

a pre-process step once-and-for-all.

have oddQI. For such surfaces,we add 1 to b if needed to correct its
parity. (In that case the cluster is totally occluded – figure 2 shows
an example of this).

Finally, we examine each intersection involving edges from differ-
ent clusters. In this situation, if n is the QI of the occluding edge,
and m is the QI of the occluded edge along its unobscured portion,
then we must have m n. If we find that for our estimated QI val-
ues m n, we can increment the base QI of the cluster containing
the occluded edge by n m, and propagate this information to other
clusters as well.

In practice, these observations often account for all clusters, and
consequently no ray tests are required in the current frame. In the
remaining cases we perform the needed ray tests efficiently through
a technique we call walking.

4.4 Walking

Once relative QI values at all points of a silhouette cluster have
been determined with respect to the QI b at the base point, we must
determine the correct value of b. The following technique does this,
assuming all objects in the scene are in front of the camera. (We
briefly discuss how to render immersive scenes below).

When one silhouette cluster is totally enclosedby another (in image
space), the enclosing silhouette may be the boundary of a region
which may totally obscure the enclosed silhouette. (See figure 2
(b) and (c). In (b), the enclosed silhouette is totally occluded, in
(c) it is not). We detect such enclosures and their consequent oc-
clusions as follows. First, we disregard silhouette curves which are
already known to be totally occluded. We also disregard any sil-
houette curve which touches the image space box, B, that bounds
all silhouette edges (as it can’t be totally enclosed).On each remain-
ing silhouette curve, we choose a point U with currently assigned
QI of 0. Let Up denote the projection of U. We identify enclos-
ing silhouettes by tracing a path in image space from Up toward the
boundary of B. From each enclosing silhouette curve S encountered
at an image space point Vp, we find the corresponding point V on S.
We choose a branch of surface adjacent to S at V along which we
can begin tracing a path whose projection heads back toward Up,
if such a branch of surface exists. (Either both branches of surface
satisfy this condition or both do not – in which case we proceed to
the next enclosing silhouette). We then traverse the surface from V
along the path whose projection retraces (in reverse direction) the
original path from Up. If this surface walk succeeds in arriving at
a point which projects to Up, a depth test determines whether U is
occluded by that portion of surface.

Our walking method does not work in general for immersive scenes
in which geometry may surround the camera. An alternative ap-
proach is to perform ray tests efficiently with the use of an octree
data structure which can be used to find intersections of a line seg-
ment with any triangles in the scene. One problem with this ap-
proach is that if there are any silhouette curves in the scene which
have gone undetected by the randomized algorithm for finding sil-
houettes, it’s possible for a small region of occlusion in a detected
silhouette to be propagated (incorrectly) throughout the entire sil-
houette. This can occur since intersections with the undetected sil-
houettes are not taken into account, but the ray test may count
occlusions due to surfaces bounded by the undetected silhouettes.
(The walking method does not count such surfaces). Taking steps to
decrease the probability of missing silhouette curves that lie within
the viewing frustum is one approach for minimizing this problem.

The discussion to this point has tacitly assumed that edges of in-
terest are all silhouette edges. These methods easily accomodate
border edges and other non-silhouette edges (such as creases or
decorative edges) as well. Border edges cause a change of 1 in
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Figure 3 (a) A mechanical part (model courtesy of the University of Washington). (b) Mechanical part rendered with sketchy lines. (c) A
charcoal-like rendering of terrain with texture-mapped strokes. (d) Human figure with expressive outline and shading strokes. (e) Mechanical

part with hidden lines in varied styles.
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Figure 3 (a) A mechanical part (model courtesy of the University of Washington). (b) Mechanical part rendered with sketchy lines. (c) A
charcoal-like rendering of terrain with texture-mapped strokes. (d) Human figure with expressive outline and shading strokes. (e) Mechanical

part with hidden lines in varied styles.
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Figure 3 (a) A mechanical part (model courtesy of the University of Washington). (b) Mechanical part rendered with sketchy lines. (c) A
charcoal-like rendering of terrain with texture-mapped strokes. (d) Human figure with expressive outline and shading strokes. (e) Mechanical

part with hidden lines in varied styles.
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(d) (e)

Figure 4: (a) Silhouette edges of a polygonal approximation pro-
duce jagged silhouette curves. (b) Our method produces smooth
silhouette curves by inferring information about the smooth surface
from the polygonal mesh. (c) The same curves shown from another
viewpoint and overlayed. (d) A complex cusp occurs in the polyg-
onal approximation when the surface is nearly parallel to the view
direction. This does not occur in the smooth silhouette curve. (e)
Smooth line drawing of the “smiling torus.” The red box shows the
location of the curves in (a)-(c).

tangents of the silhouette curves; cusps are the points where the tan-
gent is parallel to the view direction. However, this approach is not
numerically reliable, especially if the silhouette curves are approx-
imated by polylines. We propose a new, numerically more robust
way to find the cusps, using the following geometric observations.

Consider a silhouette point p with principal curvature directions
w1 and w2 and principal curvatures κ1 and κ2. Let c be the
viewpoint; since p is the silhouette point, the viewing direction
v = c − p is in the tangent plane. Let [c1, c2, 0] be the compo-
nents of c with respect to the coordinates (r, s, t) associated with
the principal curvature directions, computed by c1 = (v · w1) and
c2 = (v·w2). As we have observed, p is a cusp when the tangent to
the silhouette at p is parallel to the viewing direction v. The tangent
to the silhouette can easily be expressed in terms of curvature. Ap-
proximation (1) yields the following approximation to the normals
in a small neighborhood near p: n(r, s) = [−2κ1r,−2κ2s, 1].
The equation of the 2nd order approximation to the silhouette curve
is an implicit quadratic equation, g(r, s) = (n(r, s) · v(r, s)) = 0,
where v(r, s) is the viewing direction c − p(r, s) = [c1 − r, c2 −
s,−κ1r

2 − κ2s
2]. We calculate the vector perpendicular to the

silhouette at p as ∇g(0, 0) = [−2κ1c1,−2κ2c2]. The resulting
condition for the viewing direction to be parallel to the silhouette
tangent (or, equivalently, perpendicular to ∇g(0, 0)) to the view-
ing direction is κ1c

2
1 + κ2c

2
2 = 0. Therefore, we can define a

parameterization-independent scalar function on the surface which
we call the cusp function:

C(p) = κ1 (v · w1)
2 + κ2 (v · w2)

2

where all quantities are evaluated at point p. This function has the
following important property: cusps are contained in the intersec-
tion set of the two families of curves: one obtained as the zero set
of the function g(p), the other as the zero set of the cusp function
C(p) (Figure 5). The zero set of C(p) can be approximated in
the same way as the zero set of g(p); each triangle of the polygo-
nal mesh may contain a single line segment approximating the zero
set of C(p) and another approximating the zero set of g(p). This
allows us to compute approximate cusp locations robustly, without
introducing many spurious cusps, and at the same time using rela-
tively coarse polygonal approximations to the smooth surface.

Figure 5: Left: Cusps are found as intersections of zero sets of
two functions defined on the surface, the dot product of the normal
with the viewing direction and the cusp function. The silhouette
curve is shown in blue, the cusp zero set in red. Right: The same
curves; view from a viewpoint different from the one that was used
to compute the curves.

4.3 Fast Silhouette Detection

In the previous section, we have presented an algorithm for con-
structing approximations to the silhouette curves which, when im-
plemented in the simplest way, requires complete traversal of the
mesh. Such a traversal is unnecessary; typically, only a small per-
centage of mesh faces contain silhouettes [25, 23]. For polygo-
nal meshes, a number of fast techniques were developed that allow
one to avoid complete traversal. A stochastic algorithm was pro-
posed in [25]. A deterministic algorithm based on the Gauss map
was proposed in [3, 18], but is restricted to orthographic projection.
We present a new deterministic algorithm for accelerated location
of silhouettes, which works for both orthographic and perspective
projection. This algorithm is equally suitable for finding silhouettes
defined as zero sets, and for finding silhouette edges of polygonal
meshes.

Our algorithm is based on the concept of dual surfaces. The
points of the dual surface M ′ are the images of the tangent planes
to a surface M under a duality map, which maps each plane
Ax + By + Cz + D = 0 to the homogeneous point [A, B, C, D].
More explicitly, M ′ can be obtained by mapping each point of
M to a homogeneous point N = [n1, n2, n3,−(p · n)], where
n = [n1, n2, n3, 0] is the unit normal at p. Note that the inverse
is also true: each plane in the dual space corresponds to a point in
the primal space. Let C = [c1, c2, c3, c4] be our viewpoint in the
homogeneous form. Then the silhouette of the surface consists of
all points p for which C is in the tangent plane at that point. For
perspective projection, this means that (C ·N) = (c−p) ·n = 0.
For orthographic projection, the homogeneous formula is the same:
(C ·N) = (c ·n) = 0, where c is interpreted as the view direction.
Our algorithm is based on the following observation: the image of
the silhouette set of the surface with respect to the viewpointC un-
der the duality map is the intersection of the plane (C · x) = 0,
with the dual surface. This fact allows us to reduce the problem of
finding the silhouette to the problem of intersecting a plane with a
surface (Figure 7), for which many space-partition-based accelera-
tion techniques are available. However, an additional complication
is introduced by the fact that some points of the dual surface may be
at infinity. This does not allow us to consider only the finite part of
the projective space, which can be identified withR3. However we
can identify the whole 3D projective space with points of the unit
hypersphere S3, or, equivalently, of the boundary of a hypercube,
in four-dimensional space. As four-dimensional space is somewhat
difficult to visualize, we show the idea of the algorithm on a 2D
example in Figure 6. In the 2D case, the problem is to compute all
silhouette points on a curve, that is, the points for which the tangent
line contains the viewpoint.

While the geometric background is somewhat abstract, the actual
algorithm is quite simple. The input to the algorithm is a polygonal
mesh, with normals specified at vertices, if we are computing sil-
houettes using zero-crossings. The normals are not necessary if we
are locating the silhouette edges of the polygonal mesh. There are
two parts to the algorithm: initialization of the spatial partition and
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Figure 6: Left: Using a dual curve to find silhouette points. The
figure shows a curve in the plane z = 1 and its dual on a sphere.
The blue arrow is the vector c from the origin in 3D to the viewpoint
in the plane, the blue circle is the intersection of the plane passing
through the origin perpendicular to c with the unit sphere. The red
points are a silhouette point and its dual. The silhouette point can be
found by intersecting the blue circle with the dual curve and retriev-
ing corresponding point on the original curve. Right: Reducing the
intersection problem to planar subproblems. The upper hemisphere
containing the dual curve is projected on the surface of cube and at
most 5 (in this case 3) planar curve-line intersection problems are
solved on the faces.

Figure 7: Silhouette lines under the duality map correspond to the
intersection curve of a plane with the dual surface. Top: Torus
shown from camera and side views. Bottom: The eight 3D faces of
the hypercube, seven of which contain portions of the dual surface.
The viewpoint dual is shown as a blue plane. Silhouettes occur at
the intersection of the dual plane with the dual surface.

intersection of the dual surface with the plane corresponding to the
viewpoint. The second part is fairly standard, so we focus on the
first part.

Step 1: For each vertex p with normal n, we compute the dual
position N = [n1, n2, n3,−(p · n)]. The dual positions define
the dual mesh which has different vertex positions but the same
connectivity.
Step 2: Normalize each dual position N using l∞-norm, that is,
divide by max(|N1|, |N2|, |N3|, |N4|). After division, at least one
of the components Ni, i = 1..4, becomes 1 or -1. The resulting
four-dimensional point is on the surface of the unit hypercube. The
three-dimensional face of the cube on which the vertex is located is
determined by the index and sign of the maximal component.
Step 3: Each triangle of the dual mesh is assigned to a list for every
three-dimensional face in which it has a vertex.
Step 4: An octtree is constructed for each three-dimensional face,
and the triangles assigned to this face are placed into the octtree.

The second step of the algorithm, which is repeated for each
frame, uses the octtree to find the silhouette edges for a given cam-
era position by intersecting the dual plane with the dual surface.

We have implemented an interactive silhouette viewer based on
the dual space method. In our tests, silhouette tests were performed

on twice as many triangles as there were actual triangles contain-
ing silhouettes, suggesting that performance is roughly linear in
the number of silhouette triangles. This represents a substantial
speedup over traversing the entire mesh. Silhouette edge detec-
tion and visibility calculations on the three-times subdivided Venus
model (∼90,000 triangles) can be performed at approximately 17
frames per second on a 225 MHz SGI Octane, without using graph-
ics hardware, which is similar to the performance of the nondeter-
ministic algorithm of [25].

4.4 Visibility

Before computing visibility, we separate the silhouette curves into
segments. Visibility is determined for each segment. The follow-
ing points are used to separate segments: cusps, silhouette-feature
joints, and inverse images of silhouette-feature and silhouette-
silhouette intersections in image space. Visibility can change only
at these points, thus each segment is either completely visible or
invisible.

Determining visibility is fundamentally difficult for smooth sur-
faces, because it cannot be inferred precisely from visibility of the
approximating mesh. Our algorithm can only guarantee that the
correct visibility will be produced if the mesh is sufficiently fine, us-
ing a theoretically-estimated required degree of refinement. How-
ever, the estimate is too conservative and difficult to compute to
be practical; in our implementation, we refine the mesh to a fixed
subdivision level.

Our visibility algorithm is based on the following observation: at
any area on the surface, the rate of change of the normal is bounded
by the maximal directional curvature. For a sufficiently fine triangu-
lation, one can guarantee that for any triangle for which (n·(p−c))
changes sign, there is a silhouette edge of the polygonal approxi-
mation adjacent to a vertex of the triangle. We use the visibility
of these edges to compute visibility of the silhouette curves. The
visibility of the silhouette edges can be determined using known
techniques (e.g. [25]).

For each curve we find visibility of all nearby silhouette edges
(which is not necessarily consistent) and use the visibility of the
majority of the edges to determine visibility of the chain. It is pos-
sible to show that this method will produce correct visibility for
sufficiently fine meshes in the following sense: there is a smooth
surface for which the precise projection has the same topology as
the one computed by our method.

In practice, we have found that the algorithm performs well even
without extra refinement near the silhouettes, provided that the orig-
inal mesh is sufficiently close to the surface. An efficient algorithm
with better-defined properties would be useful.

5 Direction Fields on Surfaces

Fields on surfaces. To generate hatches, we need to choose sev-
eral direction fields on visible parts of the surface. The direction
fields are different from the more commonly used vector fields: un-
like a vector field, a direction field does not have a magnitude and
does not distinguish between the two possible orientations.

The fields can either be defined directly in the image plane as
in [31], or defined on the surface and then projected. The advan-
tage of the former method is that the field needs to be defined and
continuous only in each separate area of the image. However, it is
somewhat more difficult to use the information about the shape of
the objects when constructing the field, and the field must be re-
computed for each image. We choose to generate the field on the
surface first.

A number of different fields on surfaces have been used to define
hatching directions. The most commonly-used field is probably the
field of isoparametric lines; this method has obvious limitations,
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Figure 6: Left: Using a dual curve to find silhouette points. The
figure shows a curve in the plane z = 1 and its dual on a sphere.
The blue arrow is the vector c from the origin in 3D to the viewpoint
in the plane, the blue circle is the intersection of the plane passing
through the origin perpendicular to c with the unit sphere. The red
points are a silhouette point and its dual. The silhouette point can be
found by intersecting the blue circle with the dual curve and retriev-
ing corresponding point on the original curve. Right: Reducing the
intersection problem to planar subproblems. The upper hemisphere
containing the dual curve is projected on the surface of cube and at
most 5 (in this case 3) planar curve-line intersection problems are
solved on the faces.

Figure 7: Silhouette lines under the duality map correspond to the
intersection curve of a plane with the dual surface. Top: Torus
shown from camera and side views. Bottom: The eight 3D faces of
the hypercube, seven of which contain portions of the dual surface.
The viewpoint dual is shown as a blue plane. Silhouettes occur at
the intersection of the dual plane with the dual surface.

intersection of the dual surface with the plane corresponding to the
viewpoint. The second part is fairly standard, so we focus on the
first part.

Step 1: For each vertex p with normal n, we compute the dual
position N = [n1, n2, n3,−(p · n)]. The dual positions define
the dual mesh which has different vertex positions but the same
connectivity.
Step 2: Normalize each dual position N using l∞-norm, that is,
divide by max(|N1|, |N2|, |N3|, |N4|). After division, at least one
of the components Ni, i = 1..4, becomes 1 or -1. The resulting
four-dimensional point is on the surface of the unit hypercube. The
three-dimensional face of the cube on which the vertex is located is
determined by the index and sign of the maximal component.
Step 3: Each triangle of the dual mesh is assigned to a list for every
three-dimensional face in which it has a vertex.
Step 4: An octtree is constructed for each three-dimensional face,
and the triangles assigned to this face are placed into the octtree.

The second step of the algorithm, which is repeated for each
frame, uses the octtree to find the silhouette edges for a given cam-
era position by intersecting the dual plane with the dual surface.

We have implemented an interactive silhouette viewer based on
the dual space method. In our tests, silhouette tests were performed

on twice as many triangles as there were actual triangles contain-
ing silhouettes, suggesting that performance is roughly linear in
the number of silhouette triangles. This represents a substantial
speedup over traversing the entire mesh. Silhouette edge detec-
tion and visibility calculations on the three-times subdivided Venus
model (∼90,000 triangles) can be performed at approximately 17
frames per second on a 225 MHz SGI Octane, without using graph-
ics hardware, which is similar to the performance of the nondeter-
ministic algorithm of [25].

4.4 Visibility

Before computing visibility, we separate the silhouette curves into
segments. Visibility is determined for each segment. The follow-
ing points are used to separate segments: cusps, silhouette-feature
joints, and inverse images of silhouette-feature and silhouette-
silhouette intersections in image space. Visibility can change only
at these points, thus each segment is either completely visible or
invisible.

Determining visibility is fundamentally difficult for smooth sur-
faces, because it cannot be inferred precisely from visibility of the
approximating mesh. Our algorithm can only guarantee that the
correct visibility will be produced if the mesh is sufficiently fine, us-
ing a theoretically-estimated required degree of refinement. How-
ever, the estimate is too conservative and difficult to compute to
be practical; in our implementation, we refine the mesh to a fixed
subdivision level.

Our visibility algorithm is based on the following observation: at
any area on the surface, the rate of change of the normal is bounded
by the maximal directional curvature. For a sufficiently fine triangu-
lation, one can guarantee that for any triangle for which (n·(p−c))
changes sign, there is a silhouette edge of the polygonal approxi-
mation adjacent to a vertex of the triangle. We use the visibility
of these edges to compute visibility of the silhouette curves. The
visibility of the silhouette edges can be determined using known
techniques (e.g. [25]).

For each curve we find visibility of all nearby silhouette edges
(which is not necessarily consistent) and use the visibility of the
majority of the edges to determine visibility of the chain. It is pos-
sible to show that this method will produce correct visibility for
sufficiently fine meshes in the following sense: there is a smooth
surface for which the precise projection has the same topology as
the one computed by our method.

In practice, we have found that the algorithm performs well even
without extra refinement near the silhouettes, provided that the orig-
inal mesh is sufficiently close to the surface. An efficient algorithm
with better-defined properties would be useful.

5 Direction Fields on Surfaces

Fields on surfaces. To generate hatches, we need to choose sev-
eral direction fields on visible parts of the surface. The direction
fields are different from the more commonly used vector fields: un-
like a vector field, a direction field does not have a magnitude and
does not distinguish between the two possible orientations.

The fields can either be defined directly in the image plane as
in [31], or defined on the surface and then projected. The advan-
tage of the former method is that the field needs to be defined and
continuous only in each separate area of the image. However, it is
somewhat more difficult to use the information about the shape of
the objects when constructing the field, and the field must be re-
computed for each image. We choose to generate the field on the
surface first.

A number of different fields on surfaces have been used to define
hatching directions. The most commonly-used field is probably the
field of isoparametric lines; this method has obvious limitations,
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Figure 8: Direction fields on the Venus. (a) Silhouettes alone do not convey the interior shape of the surface. (b) Raw principle curvature
directions produce an overly-complex hatching pattern. (c) Smooth cross field produced by optimization. Reliable principal curvature
directions are left unchanged. Optimization is initialized by the principal curvatures. (d) Hatching with the smooth cross field. (e) Very
smooth cross field produced by optimizing all directions. (f) Hatching from the very smooth field.

as the parameterization may be very far from isometric, and is not
appropriate for surfaces lacking a good natural parameterization,
such as subdivision surfaces and implicit surfaces. The successes
and failures of this approach provide valuable clues for construction
of fields for hatching.

The most natural geometric candidate is the pair of principal cur-
vature direction fields [13, 21]. corresponding to the minimal and
maximal curvatures2. We will refer to the integral lines of these
fields as curvature lines. These fields do not depend on param-
eterization, capture important geometric features, and are consis-
tent with the most common two-directional hatching pattern. How-
ever, they suffer from a number of disadvantages. All umbilical
points (points with coinciding principal curvatures) are singular-
ities, which means that the fields are not defined anywhere on a
sphere and have arbitrarily complex structure on surfaces obtained
by small perturbations of a sphere. On flat areas (when both cur-
vatures are very small) the fields are likely to result in a far more
complex pattern than the one that would be used by a human.

Other candidates include isophotes (lines of constant brightness)
and the gradient field of the distance to silhouette or feature lines
[25, 12]. Both are suitable for hatching in a narrow band near
silhouettes or feature lines, but typically do not adequately cap-
ture shape further from silhouettes, nor are they suitable for cross-
hatching.

Our approach is based on several observations about successes
and failures of existing methods, as well as hatching techniques
used by artists.

• Cylindric surfaces. Surface geometry is rendered best by princi-
pal curvature directions on cylindrical surfaces, that is, surfaces for
which one of the principal curvatures is zero (all points of the sur-
face are parabolic). This fact is quite remarkable: psychophysical
studies confirm that even a few parallel curves can create a strong
impression of a cylindrical surface with curves interpreted as prin-
cipal curvature lines [32, 24]. Another important observation is that
for cylinders the principal curvature lines are also geodesics, which
is not necessarily true in general. Hatching following the principal
curvature directions fails when the ratio of principal curvatures is
close to one.
Deussen et al. [9] uses intersections of the surface with planes to
obtain hatch directions; the resulting curves are likely to be locally
close to geodesics on slowly varying surfaces.
• Isometric parameterizations. Isoparameteric lines work well as
curvature directions when a parameterization exists and is close

2It is possible to show that for a surface in general position, these fields

are always globally defined, excluding a set of isolated singularities.

to isometric, i.e. minimizes the metric distortion as described in,
for example, [10, 27]. In this case, parametric lines are close to
geodesics. Isoparametric lines were used by [36, 11].
• Artistic examples. We observe that artists tend to use relatively
straight hatch lines, even when the surface has wrinkles. Smaller
details are conveyed by varying the density and the number of hatch
directions (Figure 9).

Figure 9: Almost all hatches in this cartoon by Thomas Nast curve
only slightly, while capturing the overall shape of the surface. Note
that the hatches often appear to follow a cylinder approximating the
surface. Small details of the geometry are rendered using variations
in hatch density.

These observations lead to the following simple requirements for
hatching fields: in areas where the surface is close to parabolic, the
field should be close to principal curvature directions; on the whole
surface, the integral curves of the field should be close to geodesic.
In addition, if the surface has small details, the field should be gen-
erated using a smoothed version of the surface.

Cross fields. While it is usually possible to generate two global
direction fields for the two main hatch directions, we have ob-
served that this is undesirable in general. There are two reasons
for this: first, if we would like to illustrate nonorientable surfaces,
such fields may not exist. Second, and more importantly, there are
natural cross-hatching patterns that cannot be decomposed into two
smooth fields even locally (Figure 10). Thus, we consider cross
fields, that is, maps defined on the surface, assigning an unordered
pair of perpendicular directions to each point.

Constructing Hatching Fields. Our algorithm is based on the
considerations above and proceeds in steps.
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Figure 2: The contour generator is the set of points on the sur-
face whose normal vector is perpendicular to the viewing direction.
(a) When projected into the image, its visible portions are called
the contour. (b) A topographic map of the surface in (a) with the
contour generator shown in green. The portion that projects to the
contour is drawn solid.

lines, provide features much like creases, and can help convey
the structure and complexity of an object [Interrante et al. 1995].
Ridges and valleys, however, lack the view-dependent nature that
hand-drawn pictures possess. Consider a drawing of a face. In pro-
file, an artist would indeed draw a line along the ridge of the nose
(as in Figure 1). However, for a frontal view the artist would instead
draw lines on one or both sides of the nose (as in the top right of
Figure 9).

Whelan [2001] has proposed view-dependent lines for rendering
terrain, called formulated silhouettes. Formulated silhouettes are
determined from those regions that become occluded in a single al-
ternative view where the camera is lowered by a prescribed amount.
This represents a related approach to ours in so far as these lines ap-
proximate some fraction of the suggestive contours of terrain.

Because we propose image-space as well as object-space algo-
rithms for computing suggestive contours, our work compares with
previous image manipulations that find lines in real images. In
particular, Pearson and Robinson [1985] and Iverson and Zucker
[1995] extract linear features along the darkest parts of the image
(valleys in the image). Our image-space algorithm takes a broadly
similar form (though of course without the robustness required for
real images), and thus our theoretical arguments offer a new per-
spective on these techniques.

1.2 Background: Contours

It is obvious what contours are in an image, but defining suggestive
contours requires an understanding of contours on objects. This
section draws in part on Cipolla and Giblin [2000] to summarize
the geometry of contour formation, and the important surface prop-
erties, such as curvature, that contours reflect.

Consider a view of a smooth and closed surface S from a per-
spective camera centered at c. The contour generator is defined as
the set of points that lie on this surface and satisfy:

n(p) ·v(p) = 0 (1)

where p ∈ S is a point on the surface, n(p) is the unit surface nor-
mal at p, and v is the view vector: v(p) = c−p. From the typical
(generic) viewpoint, the contour generator consists of a set of dis-
connected loops on the surface. The contour consists of the visible
portions of these curves, projected into the image plane. Wherever
the contour generator is viewed from one of its tangent directions,
the contour abruptly stops—this is an ending contour. Figure 2(a)
illustrates contour generators, contours, and ending contours. A top
view of this surface appears in (b), with the contour generators from
(a) portrayed directly on the surface.

When working with polyhedra, it is easy to compute the loca-
tions of contours. The contour generator is the set of polyhedral

n v
p w

tangent plane radial curve

n
p wradial plane

(a) (b)

Figure 3: (a) The view vector v is projected onto the tangent plane
to obtain w. (b) The radial plane is formed by p, n and w and slices
the surface along the radial curve—the curvature of which is κr(p).

edges that join a polygon facing the camera with one facing away
from it [Appel 1967]. This strategy detects sign changes in n · v.
However, with smooth surfaces, we must solve (1) over the entire
surface [Hertzmann and Zorin 2000].

In characterizing suggestive contours, we will also use the no-
tion of the curvature of a curve. The curvature κ(p) at a point p on
a curve is the reciprocal of the radius of the circle that best approx-
imates the curve at p [Hilbert and Cohn-Vossen 1932; do Carmo
1976]. Smaller curvature values correspond to larger circles; a line
has curvature zero. The sign of the curvature requires an orientation
to be specified (using a normal vector). Our convention is that when
the circle is beneath the curve (i.e. the normal vector points away
from the center of the circle), the curvature is positive: a convexity.2
Concave parts have negative curvature. Zero curvature corresponds
either to an inflection point or a line.

The curvature of the surface S at a point p is measured along a
chosen curve that sits on the surface and passes through p. Com-
monly, this curve is obtained by intersecting the surface with the
plane that contains p, the unit surface normal n, and a specific di-
rection d which lies in the tangent plane of S at p. This construction
yields the normal curvature, which varies smoothly with the direc-
tion, and ranges between the principal curvatures κ1(p) and κ2(p),
which are realized in their respective principal curvature directions
[do Carmo 1976]. Of particular relevance in this work is the radial
curvature κr(p) [Koenderink 1984], which is the normal curvature
of the surface in the direction of w defined as the (unnormalized)
projection of the view vector v onto the tangent plane at p. See Fig-
ure 3. We are extending Koenderink’s definition—κr was originally
defined only along the contour generator, where v already sits in the
tangent plane (so that w = v). The radial curvature remains unde-
fined wherever v and n are parallel (as w = 0), but these surface
locations are not of concern in this work.

2 Suggestive contours

Informally, suggestive contours are curves along which the radial
curvature is zero and where the surface bends away from the viewer
(as opposed to bending towards them). Equivalently, they are those
locations at which the surface is almost in contour from the origi-
nal viewpoint—locations at which the dot product in (1) is a pos-
itive local minimum rather than a zero. They also correspond to
true contours in relatively nearby viewpoints. In this section, we
define suggestive contours formally in terms of a suggestive con-
tour generator, which sits on the surface. Figure 4 illustrates this.
Figure 4(a) overlays the suggestive contours drawn in blue on the
image of Figure 2(a), while Figure 4(b) presents the suggestive con-
tour generator in a topographic view; the portion that projects to the
suggestive contour is drawn solid.

2While this is the opposite convention from do Carmo [1976], it corre-
sponds to outward-pointing surface normals.
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Figure 4: (a) Suggestive contours (shown in blue) extend the actual
contours of the surface (shown in green). (b) A topographic view
showing how the suggestive contour generators cross contours at
the ending contours. The portion of the suggestive contour genera-
tor that projects to the suggestive contour is drawn solid.

The situation illustrated in Figure 5 helps to motivate our defi-
nitions. In this case, a viewpoint at c sees a contour at q, and in
a nearby view c′ the contour has “slid” along the surface, to q′.
Point p is different, however. This point is a contour when viewed
from c′, but in no other viewpoint closer to c. Rather than sliding
along the surface as the camera position varies between c and c′,
it suddenly appears. When viewed from c, p makes a suggestive
contour, while q′ does not. Any definition of suggestive contour
generators must pick out the location of p in Figure 5 from among
all the points on the surface.

In the remainder of this section, we offer a primary definition
of suggestive contour generators, two equivalent definitions, and
some further descriptive results. The context for all three definitions
comes from Section 1.2: the surface S is viewed from a point c.
Defined at every point p ∈ S is the unit surface normal n(p), the
view vector v(p) = c−p, and w(p) which is the projection of v(p)
onto the tangent plane at p. We exclude from this discussion all
locations where n and v are parallel (where w = 0), as the radial
plane is not defined there. When we define the suggestive contour
generator, we are defining the suggestive contour generator of S
from the viewpoint c.

2.1 Definition: Zeros of radial curvature

Recall that the radial curvature is measured along a curve in the
radial plane, as diagrammed in Figure 3(b). Suggestive contours
are points of inflection on these curves when viewed from the con-
vex side, along which a contour will eventually first appear. See
Figure 6(a). These points of inflection occur where the radial cur-
vature changes sign, and the radial curvature is increasing towards
the camera. Thus we have:

Definition I: The suggestive contour generator is the set
of points on the surface at which its radial curvature κr
is 0, and the directional derivative of κr in the direction
of w is positive:

Dwκr > 0 (2)

Here, the directional derivative Dwκr is defined as the differential
[do Carmo 1976] of κr(p) applied to w, or dκr(w).

Returning to the situation in Figure 5, we see there are actually
two inflection points on the curve: p and r. Of these, only p satisfies
(2) and hence is part of the suggestive contour generator.

The solution of κr = 0 is a set of closed loops on the surface
(from a generic viewpoint), just as the contours are. We see the por-
tions of these loops as dictated by (2) drawn in blue in Figure 4(b);
the view vector is tangent to those locations where (2) cuts these
loops. Furthermore, we see that contours and suggestive contours
meet at the ending contours. This is because the radial curvature at
ending contours is zero [Koenderink 1984]. In fact, Hertzmann and
Zorin [2000] solve κr = 0 (which they call the cusp function) along
the contour generator to locate the points of ending contour. This
leads to renderings of contours with accurate visibility.

main viewc
nearby viewc' p

q'r q

Figure 5: A situation showing both contours (q) and suggestive
contours (p), as seen by the main viewpoint c. As the viewpoint
moves to c′, a contour suddenly appears at p, while the contour
at q′ slides along the surface from q.

2.2 Equivalent definitions

2.2.1 “Almost contours”: minima of n·v

Our second definition of suggestive contours is those locations at
which the surface is almost a contour.3 At these locations n ·v does
not reach zero, but is a local minimum along w. Thus we have:

Definition II: The suggestive contour generator is the
set of minima of n ·v in the direction of w.

Equivalence of I and II: We note that local minima of n · v in
the direction of w correspond to zeros of the directional derivative
of n ·v in the direction of w where the second directional derivative
in w is positive. Specifically:

Dw (n ·v) = 0, and (3)

Dw (Dw (n ·v)) > 0 (4)

In rewriting (3) as:

Dw (n ·v) = Dwn ·v+n ·Dwv

we note that w can replace v in the first term, as Dwn lies in the
tangent plane because n maintains unit length. Also, it follows from
v = c−p for p ∈ S that derivatives of v lie in the tangent plane; so
the second term is zero because Dwv is perpendicular to n. So:

Dw (n ·v) = Dwn ·w = −II(w,w) = (w ·w)κr

shows that Dw (n ·v) is by definition the (negated) second funda-
mental form −II [do Carmo 1976] which is a positive scaling of
the radial curvature κr, and has the same zeros as κr. Computing
Dw

(
(w ·w)κr

)
at κr = 0 shows the equivalence of (2) and (4).

2.2.2 Contours in nearby viewpoints

Recall that q′ in Figure 5 is not a suggestive contour because it
slid along the surface from the contour q as the viewpoint changed.
However, q′ is still a contour in a nearby viewpoint. This indi-
cates that our informal definition of suggestive contours as simply
those points that are contours in nearby views is incomplete. We re-
fine this definition of suggestive contours to be those points that are
contours in “nearby” viewpoints, but do not have “corresponding”
contours in any closer views.

A measure of distance to nearby viewpoints as well as the corre-
spondence induced by changing the viewpoint are defined in terms
of the radial plane—see Figure 3(b). The radial distance at p from
the main viewpoint c to an alternative view c′ is the angle formed
at p by the points c, p and the projection of c′ onto the radial plane

3Koenderink uses the term almost contour in passing when describing
the geometry of a specific shape: [Koenderink 1990], p. 304.
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ject space). Center: image-space algorithm. Right: object-space
algorithm.

There are many successful image processing algorithms for de-
tecting valleys [Iverson and Zucker 1995; Steger 1999]. However,
they are typically complex—the presence of noise in captured im-
ages is largely at fault for this. Given we are working with rendered
images that are also smooth (away from occlusion boundaries), we
can use a much simpler algorithm.

The basic idea is as follows. While a pixel in a valley is not nec-
essarily the minimum intensity value in a neighborhood, it will be
among a thin set of dark pixels that cuts across the neighborhood.
If the valley is steep, the neighborhood will also contain signifi-
cantly brighter pixels away from the valley; to implement (5), we
can require a sufficient intensity difference that the surface must be
turned meaningfully away. So to test pixel i with intensity pi our
algorithm collects all the pixel intensities within a radius r centered
around it; across this circular window the greatest intensity is pmax.
We label i a valley if two conditions are met: no more than a certain
percentage s of the pixels in this disk are strictly darker than pi; and
pmax − pi exceeds a fixed threshold d. (To minimize the effects of
discretization, it is convenient to scale s as r varies by

(
1− 1

r
)

and d
by r.) As a final step, we remove small irregularities with a median
filter of radius r.

4 Results

This section demonstrates results from our image- and object-space
algorithms, then briefly compares suggestive contours with other
effects. As seen in Figure 9, the image- and object-space algorithms
produce very similar results, but the object-space algorithm has the
advantage of generating continuous stroke paths on the surface. We
believe that the image-space method, in contrast, will not be able to
produce nicely-rendered strokes in a hand-drawn style. Because the
algorithm produces a discrete set of pixels, good image quality is
dependent on heavy post-processing, such as median filtering. Even
so, its avoidance of higher-order derivatives makes it much less sus-
ceptible to problems resulting from noise in the geometry—this ac-
counts for much of the differences in the locations or presence of
the suggestive contours on the hand. The object-space algorithm is
generally more efficient for larger images and medium-sized (50–
100K polygon) models, aside from the initial preprocessing to com-
pute curvatures (which takes several seconds for a medium-sized
polygon model).

Figure 10: Results of the object-space algorithm (Section 3.1).
Left: only contours; Right: both contours and suggestive contours.

Figure 11: Results of the image-space algorithm (Section 3.2).
Left: only contours; Right: both contours and suggestive contours.

Results of our object-space algorithm are shown in Figure 10, as
well as Figure 1 and the center of Figure 12. In each case, the left
image displays a drawing with only the contours. In these exam-
ples, the values of θc ranged from 20 to 30 degrees and td from 0.02
to 0.08; with ts = 2, θ ′

c = 0 and t ′d = 0 for all examples. Computing
the contours and suggestive contours on a 50K polygon mesh takes
0.15 seconds. (Available contour extraction techniques [Markosian
et al. 1997; Gooch et al. 1999; Hertzmann and Zorin 2000; Sander
et al. 2000] can certainly be adapted to improve our performance by
not checking every polygon.) Figure 11 and the right of Figure 12
show results of our image-space algorithm for finding suggestive
contours, using the parameter values r = 4.0, s = 0.2 and d = 0.25.
Computation lasted 0.4 seconds for a 640x480 image (the time is
dominated by the image operations for these examples).

The image-space rendering at right in Figure 12 uses a version
of the David at a substantially finer scale than the object-space ren-
dering in the center. The substantial noise in the higher-resolution
mesh posed a difficulty in applying (2) successfully; while the
strokes were placed reasonably, they were excessively fragmented.

In each of these examples, we selected viewpoints that produce
compelling results; not all viewpoints are created equal (as artists
already know). For the object-space algorithm, θc and td were ad-
justed to cull only those lines that convey shape most effectively.

From renderings of contour alone, the limited shape information
that is available seems to present only an undifferentiated, smooth
and round relief. Suggestive contours enrich and differentiate the
conveyed shape. As in the lines at the head and shoulders of the
figures, suggestive contours define bulges and allow the viewer to
localize their convexity more precisely. As in the lines on the rump
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Figure 9: Comparison of image- and object-space algorithms for
computing suggestive contours. Left: contours (computed in ob-
ject space). Center: image-space algorithm. Right: object-space
algorithm.

There are many successful image processing algorithms for de-
tecting valleys [Iverson and Zucker 1995; Steger 1999]. However,
they are typically complex—the presence of noise in captured im-
ages is largely at fault for this. Given we are working with rendered
images that are also smooth (away from occlusion boundaries), we
can use a much simpler algorithm.

The basic idea is as follows. While a pixel in a valley is not nec-
essarily the minimum intensity value in a neighborhood, it will be
among a thin set of dark pixels that cuts across the neighborhood.
If the valley is steep, the neighborhood will also contain signifi-
cantly brighter pixels away from the valley; to implement (5), we
can require a sufficient intensity difference that the surface must be
turned meaningfully away. So to test pixel i with intensity pi our
algorithm collects all the pixel intensities within a radius r centered
around it; across this circular window the greatest intensity is pmax.
We label i a valley if two conditions are met: no more than a certain
percentage s of the pixels in this disk are strictly darker than pi; and
pmax − pi exceeds a fixed threshold d. (To minimize the effects of
discretization, it is convenient to scale s as r varies by

(
1− 1

r
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and d
by r.) As a final step, we remove small irregularities with a median
filter of radius r.

4 Results

This section demonstrates results from our image- and object-space
algorithms, then briefly compares suggestive contours with other
effects. As seen in Figure 9, the image- and object-space algorithms
produce very similar results, but the object-space algorithm has the
advantage of generating continuous stroke paths on the surface. We
believe that the image-space method, in contrast, will not be able to
produce nicely-rendered strokes in a hand-drawn style. Because the
algorithm produces a discrete set of pixels, good image quality is
dependent on heavy post-processing, such as median filtering. Even
so, its avoidance of higher-order derivatives makes it much less sus-
ceptible to problems resulting from noise in the geometry—this ac-
counts for much of the differences in the locations or presence of
the suggestive contours on the hand. The object-space algorithm is
generally more efficient for larger images and medium-sized (50–
100K polygon) models, aside from the initial preprocessing to com-
pute curvatures (which takes several seconds for a medium-sized
polygon model).

Figure 10: Results of the object-space algorithm (Section 3.1).
Left: only contours; Right: both contours and suggestive contours.

Figure 11: Results of the image-space algorithm (Section 3.2).
Left: only contours; Right: both contours and suggestive contours.

Results of our object-space algorithm are shown in Figure 10, as
well as Figure 1 and the center of Figure 12. In each case, the left
image displays a drawing with only the contours. In these exam-
ples, the values of θc ranged from 20 to 30 degrees and td from 0.02
to 0.08; with ts = 2, θ ′

c = 0 and t ′d = 0 for all examples. Computing
the contours and suggestive contours on a 50K polygon mesh takes
0.15 seconds. (Available contour extraction techniques [Markosian
et al. 1997; Gooch et al. 1999; Hertzmann and Zorin 2000; Sander
et al. 2000] can certainly be adapted to improve our performance by
not checking every polygon.) Figure 11 and the right of Figure 12
show results of our image-space algorithm for finding suggestive
contours, using the parameter values r = 4.0, s = 0.2 and d = 0.25.
Computation lasted 0.4 seconds for a 640x480 image (the time is
dominated by the image operations for these examples).

The image-space rendering at right in Figure 12 uses a version
of the David at a substantially finer scale than the object-space ren-
dering in the center. The substantial noise in the higher-resolution
mesh posed a difficulty in applying (2) successfully; while the
strokes were placed reasonably, they were excessively fragmented.

In each of these examples, we selected viewpoints that produce
compelling results; not all viewpoints are created equal (as artists
already know). For the object-space algorithm, θc and td were ad-
justed to cull only those lines that convey shape most effectively.

From renderings of contour alone, the limited shape information
that is available seems to present only an undifferentiated, smooth
and round relief. Suggestive contours enrich and differentiate the
conveyed shape. As in the lines at the head and shoulders of the
figures, suggestive contours define bulges and allow the viewer to
localize their convexity more precisely. As in the lines on the rump
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