Cornell University CS 569: Interactive Computer Graphics

Interactive Non-Photorealistic Rendering

Lecture 16

Silhouettes, creases, shading

Gooch et al. 1997

Winkenbach \& Salesin 1994

Silhouettes + parametric hatching

Figure 2: Klein bottle. Lighting and hatch directions are chosen to convey surface shape. Undercuts and Mach bands near the hole and the self-intersection enhance contrast.

G-buffer operations

depth image

Parametrically aligned stroke textures

Renderings using G-buffers

(a) shaded image
(b) depth image

(c) edge image (1)
(d) enhanced image (1)

(c') edge image (2)

(d') enhanced image (2)

Figure 1 Arrows indicate cusps. (a) A typical cusp. (b) A more exotic cusp. (c) A border cusp (the two edges meeting at the center of the sheet are border edges).

Drawn using geometric silhouettes and creases

Markosian et al. 1997

Perspective silhouettes (2D example)

Problems with faceted silhouettes

(a)
(b)

(e)

(c)

Hertzmann \& Zorin 00

Perspective silhouettes (3D example)

Hatching directions from principal curvatures

Figure 8: Direction fields on the Venus. (a) Silhouettes alone do not convey the interior shape of the surface. (b) Raw principle curvature Figure 8: Direction fields on the Venus. (a) Silhouettes alone do not convey the interior shape of the surface. (b) Raw principle curvature
directions produce an overly-complex hatching pattern. (c) Smooth cross field produced by optimization. Reliable principal curvature directions produce an overly-complex hatching pattern. (c) Smooth crosss nield produced by optimization. Reliable principal curvature
directions are left unchanged. Optimization is initialized by the principal curvatures. (d) Hatching with the smooth cross field. (e) Very smooth cross field produced by optimizing all directions. (f) Hatching from the very smooth field.

Suggestive contour

Figure 4: (a) Suggestive contours (shown in blue) extend the actual contours of the surface (shown in green). (b) A topographic view showing how the suggestive contour generators cross contours at the ending contours. The portion of the suggestive contour generator that projects to the suggestive contour is drawn solid.

DeCarlo et al. 2003

Contour (silhouette)

(a)

Figure 2: The contour generator is the set of points on the surface whose normal vector is perpendicular to the viewing direction. (a) When projected into the image, its visible portions are called the contour. (b) A topographic map of the surface in (a) with the contour generator shown in green. The portion that projects to the contour is drawn solid.

Suggesive contours

Cornell CS569 Spring 2008

