
© 2008 Steve Marschner

Lecture 14

Cornell University CS 569: Interactive Computer Graphics

Lecture 14 • Cornell CS569 Spring 2008

Triangle meshes

1 Lecture 14 • Cornell CS569 Spring 2008

Topological validity

• strongest property, and most simple: be a manifold
this means that no points should be “special”
manifold:

• edge points: each edge should have exactly 2 triangles
• vertex points: each vertex should have one loop of triangles

manifold with boundary (looser):
• edge points: each edge should have at most 2 triangles
• vertex points: each vertex should have one connected fan of triangles

[F
o
le

y
et

 a
l.]

2

Lecture 14 • Cornell CS569 Spring 2008

Notation

• nT = #tris; nV = #verts; nE = #edges

• Euler: nV – nE + nT = 2 for a simple closed surface
and in general sums to small integer

argument for implication that nT:nE:nV is about 2:3:1

[F
o
le

y
et

 a
l.]

3 Lecture 14 • Cornell CS569 Spring 2008

Winged-edge structure

• Edge-centric rather than face-centric
therefore also works for polygon meshes

• Each (oriented) edge points to:
left and right forward edges
left and right backward edges
front and back vertices

left and right faces

• Each face or vertex points to
one edge

4

Lecture 14 • Cornell CS569 Spring 2008

Winged-edge structure

5 Lecture 14 • Cornell CS569 Spring 2008

Winged-edge structure

• array of vertex positions: 12 bytes/vertex

• array of 8-tuples of indices (per edge)
head/tail left/right edges + head/tail verts + left/right tris

int[nE][8]: about 96 bytes per vertex

• 3 edges per vertex (on average)
• (8 indices x 4 bytes) per edge

• add a representative edge per vertex
int[nV]: 4 bytes per vertex

• total storage: 112 bytes per vertex

6

Lecture 14 • Cornell CS569 Spring 2008

• Simpli!es, cleans up winged edge
still works for polygon meshes

• Each half-edge points to:
next edge (left forward)
next vertex (front)
the face (left)

the opposite half-edge

• Each face or vertex points to
one half-edge

Half-edge structure

7 Lecture 14 • Cornell CS569 Spring 2008

Half-edge structure

8

Lecture 14 • Cornell CS569 Spring 2008

Half-edge structure

• array of vertex positions: 12 bytes/vert

• array of 4-tuples of indices (per h-edge)
next, pair h-edges + head vert + left tri

int[2nE][4]: about 96 bytes per vertex

• 6 h. edges per vertex (on average)
• (4 indices x 4 bytes) per h-edge

• add a representative hedge per vertex
int[nV]: 4 bytes per vertex

• total storage: 112 bytes per vertex

9 Lecture 14 • Cornell CS569 Spring 2008

Triangle neighbor structure

• Extension to indexed
triangle set

• Triangle points to its three
neighboring triangles

• Vertex points to a single
neighboring triangle

• Can now enumerate
triangles around a vertex

10

Lecture 14 • Cornell CS569 Spring 2008

Triangle neighbor structure

11 Lecture 14 • Cornell CS569 Spring 2008

Triangle neighbor structure

• indexed mesh is 36 bytes per vertex

• add an array of triples of indices (per triangle)
int[nT][3]: about 24 bytes per vertex

• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• add an array of representative triangle per vertex
int[nV]: 4 bytes per vertex

• total storage: 64 bytes per vertex

12

