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Real-time geometric deformations
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Blend shapes
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Blend shapes
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Free-form deformations

4

Dallas, August 18-22 Volume 20, Number 4, 1986 

5. A P P L I C A T I O N S  

We conclude by demonstrating some of the flexibility 

of FFD. Figures 14-16 demonstrate how the technique 

can be applied hierarchically to mold a rounded bar into 

a telephone handset. Figure 14 shows a local C: FFD 

which draws a mouthpiece from the undeformed bar. 

The earphone is formed in like manner, and Figure 15 

shows a global FFD to impart a slight curvature to the 

handset. Figure 16 shows the final result. Note that the 

final telephone is a free-form solid model. The original 

bar in Figure 14 is modeled as a solid using an implicit 

equation, and each FFD merely modifies the geometry, 

without altering the integrity of the solid model. Thus, 

the hierarchical FFD formulation fully enables the com- 

putation of mass properties and point classification. We 

are also impressed by the ease with which the phone was 

designed. With only a few hours of experience under our 

belts, the phone was produced in a single design iteration! 
Fig. 16 Final Product 

Fig. 14 Local FFD 
Fig. 17 Two C l Bicubic Patches 

Fig, 15 Global FFD 

Fig. 18 c '  FFD 

Figures 17 and 18 further illustrate the "lump of 

clay" metaphor.  Two slope continuous bicubic patches 
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Procedural deformation
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Twist deformation
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Mesh skinning
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Skinning artifacts
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As before, the form at any point in the abstract space is:

xj(p) =
N∑

i1=1

w̃i1(p)xi1j (5)

Note that the interpolated form still only includes a sum
over the real examples. In other words, there are still only
N cardinal bases after the reparameterization. The pseudo-
examples reshape these N bases from w to w̃.

w̃i1(p) =
Ñ∑

i2=1

r̃i2i1Ri2(p) +
D∑

l=0

ãi1lAl(p) (6)

Also as before
p̃hã = F̃

However, F̃ is no longer an identity matrix. It now has Ñ
rows and N columns. Assuming the new pseudo-examples
are all located at the bottom of the matrix, the top NxN
square is still an identity. The lower Ñ − N rows are the
values of the original cardinal bases w at the location where
the pseudo-examples were taken from (see Equation 6). That
is, in each row, the Fit matrix contains the desired values
of the N cardinal bases, now at Ñ locations. These are 1
or 0 for the real example locations and the original cardinal
weights for the pseudo-examples, in other words, the weights
at the locations from which the pseudo-examples were drawn.

The radial portion of the cardinal basis construction pro-
ceeds similarly. The residuals are now

q̃i1i2 = F̃i1i2 −
D∑

l=0

ãi2lAl(pi1)

Note that instead of the Kronecker delta we now have the
values from F̃ .

The coefficients, r̃i2i1 , are now found by solving the matrix
system,

Qr̃ = q̃

As before, Qi1i2 has terms equal to Ri2(p̃i1), however, these
terms now include the new pseudo-example locations. As
a consequence, the radii of the radial basis functions may
change.

5 Shapes and Skeletons

Animated characters are often represented as an articulated
skeleton of links connected by joints. Geometry is associated
with each link and moves with the link as the joints are
rotated.

If the geometry associated with the links is represented
simply as individual rigid bodies, these parts of the character
will separate and interpenetrate when a joint is rotated. A
standard way to create a continuous skinned model is to
smoothly blend the joint transforms associated with each
link of the character, in other words, vertices near a joint will
respond to a blend of the transforms associated with both
links on either side of the joint. This is supported in current
graphics hardware, making it an attractive technique.

Unfortunately, transform blending exhibits some prob-
lems. These problems were recognized by Lewis et al. [7]
who present results similar to those presented here. As noted
earlier, in contrast to Lewis et al. our solution allows inter-
active editing of the abstract space due to the single weight
per example formulation with no loss of authoring flexibility.

Figure 6: Simple transformation blending exhibits shrinking
about joints.

This also provides real-time interaction since it can leverage
the transform blending in graphics hardware.

We use an arm bending at the elbow to first discuss the
problems associated with naive transform blending and then
to demonstrate how we can overcome these difficulties in the
context of shape blending. To perform the simple transform
blending, a blending weight α is assigned to each vertex.
For instance, in an elbow bend, vertices sufficiently below
the elbow would have weight α = 1, and those sufficiently
above, α = 0. Those vertices near the elbow would have α
values between 0 and 1.

We denote the transformation matrix for the upper arm as
T0, and the transformation for the lower arm as T1. We use
superscripts to denote the amount of rotation of the joint.
Thus, as the elbow rotates, we say that T1 changes from
T 0

1 when the elbow is straight to T 1
1 at a bent position. In

between the transform is T β
1 for a bending amount β. We

refer to the position of the arm when T1 = T 0
1 as the rest

position.
We denote the position of a vertex as x0 when the trans-

formation of the joint is T 0
1 . The simple transform blending

is defined as
x = αT β

1 x0 + (1 − α)T0x0

where α is the blending weight assigned to that vertex. Un-
fortunately, linearly summed transformation matrices do not
behave as one would like. The result is that the skin ap-
pears to shrink near the rotating joint (see Figure 6). In
addition, simple transform blending does not provide a rich
set of tools for creating effects such as a muscle bulging as
the elbow bends.

We can solve both problems with shape blending. To do
this, the designer first creates examples of a straight arm,
Xβ=0, and a bent arm, Xβ=1, for, say, a 90 degree bend
(Figure 7). The bent arm includes any muscle bulging or
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Skinning artifacts
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Skinning artifacts
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