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Imaging in the GPU
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Announcement: DreamWorks visit

2

Time: Wednesday February 27, 2008, 4:45PM

Location:  551 Rhodes Hall

Title:  PDI/Dreamworks Animation Presentation

Speaker:  Beth Hofer
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154 CHAPTER 3. RASTERIZATION

Sized Base R G B A L I D
Internal Format Internal Format bits bits bits bits bits bits bits
ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
DEPTH COMPONENT16 DEPTH COMPONENT 16
DEPTH COMPONENT24 DEPTH COMPONENT 24
DEPTH COMPONENT32 DEPTH COMPONENT 32
LUMINANCE4 LUMINANCE 4
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4
LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6
LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8
LUMINANCE12 ALPHA4 LUMINANCE ALPHA 4 12
LUMINANCE12 ALPHA12 LUMINANCE ALPHA 12 12
LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3 G3 B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5 A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGB10 A2 RGBA 10 10 10 2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16

Sized internal formats continued on next page
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3.8. TEXTURING 155

Sized internal formats continued from previous page
Sized Base R G B A L I D
Internal Format Internal Format bits bits bits bits bits bits bits
SRGB8 RGB 8 8 8
SRGB8 ALPHA8 RGBA 8 8 8 8
SLUMINANCE LUMINANCE 8
SLUMINANCE ALPHA8 LUMINANCE ALPHA 8 8

Table 3.16: Correspondence of sized internal formats to base in-
ternal formats, and desired component resolutions for each sized
internal format.

Compressed Internal Format Base Internal Format Type
COMPRESSED ALPHA ALPHA Generic
COMPRESSED LUMINANCE LUMINANCE Generic
COMPRESSED LUMINANCE ALPHA LUMINANCE ALPHA Generic
COMPRESSED INTENSITY INTENSITY Generic
COMPRESSED RGB RGB Generic
COMPRESSED RGBA RGBA Generic
COMPRESSED SRGB RGB Generic
COMPRESSED SRGB ALPHA RGBA Generic
COMPRESSED SLUMINANCE LUMINANCE Generic
COMPRESSED SLUMINANCE ALPHA LUMINANCE ALPHA Generic

Table 3.17: Generic and specific compressed internal formats. No specific formats
are defined by OpenGL 2.1; however, several specific specific compression types
are defined in GL extensions.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.15. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImage1D (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed

Version 2.1 - December 1, 2006

Sized                       Base             R    G    B    A    L    I

Internal Format             Internal Format bits bits bits bits bits bits

--------------------------- --------------- ---- ---- ---- ---- ---- ----

RGBA32F_ARB                 RGBA            f32  f32  f32  f32

RGB32F_ARB                  RGB             f32  f32  f32

ALPHA32F_ARB                ALPHA                          f32

INTENSITY32F_ARB            INTENSITY                                f32

LUMINANCE32F_ARB            LUMINANCE                           f32

LUMINANCE_ALPHA32F_ARB      LUMINANCE_ALPHA                f32  f32

RGBA16F_ARB                 RGBA            f16  f16  f16  f16

RGB16F_ARB                  RGB             f16  f16  f16

ALPHA16F_ARB                ALPHA                          f16

INTENSITY16F_ARB            INTENSITY                                f16

LUMINANCE16F_ARB            LUMINANCE                           f16

LUMINANCE_ALPHA16F_ARB      LUMINANCE_ALPHA                f16  f16

Table 3.16: Correspondence of sized internal formats to base

internal formats, and desired component resolutions for each

sized internal format.  The notation <f16> and <f32> imply

16- and 32-bit floating-point, respectively.

(FP formats are currently part of ARB_texture_!oat)

OpenGL Internal Pixel Formats
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Gamma correction and illumination
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Figure 14: Two highway scenes before and after the scotopic glare

algorithm. The orientation of the headlights is made obvious by the

degree of glare.

Figure 15: An indoor simulation before and after the mesopic glare

algorithm..

Figure 16: The Sun showing through leaves before and after the

photopic glare algorithm. The location of the Sun is obvious only

after the glare is added. Note that there is no lenticular halo because

the pupil of the viewer is contracted.
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Figure 1: A series of five photographs. The exposure is increasing from left (1/1000 of a second) to right (1/4 of a second).

play devices. In this section we provide a brief review of previous
work. More detailed and in-depth surveys are presented by DiCarlo
and Wandell [2001] and Tumblin et al. [1999].

Most HDR compression methods operate on the luminance
channel or perform essentially the same processing independently
in each of the RGB channels, so throughout most of this paper we
will treat HDR maps as (scalar) luminance functions.

Previous approaches can be classified into two broad groups: (1)
global (spatially invariant) mappings, and (2) spatially variant op-
erators. DiCarlo and Wandell [2001] refer to the former as TRCs
(tone reproduction curves) and to the latter as TROs (tone repro-
duction operators); we adopt these acronyms for the remainder of
this paper.

The most naive TRC linearly scales the HDR values such that
they fit into a canonic range, such as [0,1]. Such scaling preserves
relative contrasts perfectly, but the displayed image may suffer se-
vere loss of visibility whenever the dynamic range of the display
is smaller than the original dynamic range of the image, and due
to quantization. Other common TRCs are gamma correction and
histogram equalization.

In a pioneering work, Tumblin and Rushmeier [1993] describe a
more sophisticated non-linear TRC designed to preserve the appar-
ent brightness of an image based on the actual luminances present in
the image and the target display characteristics. Ward [1994] sug-
gested a simpler linear scale factor automatically determined from
image luminances so as to preserve apparent contrast and visibil-
ity around a particular adaptation level. The most recent and most
sophisticated, to our knowledge, TRC is described by Ward Larson
et al. [1997]. They first describe a clever improvement to histogram
equalization, and then show how to extend this idea to incorporate
models of human contrast sensitivity, glare, spatial acuity, and color
sensitivity effects. This technique works very well on a wide variety
of images.

The main advantage of TRCs lies in their simplicity and compu-
tational efficiency: once a mapping has been determined, the image
may be mapped very quickly, e.g., using lookup tables. However,
such global mappings must be one-to-one and monotonic in order to
avoid reversals of local edge contrasts. As such, they have a funda-
mental difficulty preserving local contrasts in images where the in-
tensities of the regions of interest populate the entire dynamic range
in a more or less uniform fashion. This shortcoming is illustrated
in the middle image of Figure 2. In this example, the distribution of
luminances is almost uniform, and Ward Larson’s technique results
in a mapping, which is rather similar to a simple gamma correction.
As a result, local contrast is drastically reduced.

Spatially variant tone reproduction operators are more flexible
than TRCs, since they take local spatial context into account when
deciding how to map a particular pixel. In particular, such operators
can transform two pixels with the same luminance value to different
display luminances, or two different luminances to the same display
intensity. This added flexibility in the mapping should make it pos-
sible to achieve improved local contrast.

The problem of high-dynamic range compression is intimately
related to the problem of recovering reflectances from an image
[Horn 1974]. An image I(x,y) is regarded as a product

I(x,y) = R(x,y) L(x,y),

where R(x,y) is the reflectance and L(x,y) is the illuminance at each
point (x,y). The function R(x,y) is commonly referred to as the
intrinsic image of a scene. The largest luminance variations in an
HDR image come from the illuminance function L, since real-world

reflectances are unlikely to create contrasts greater than 100:12.
Thus, dynamic range compression can, in principle, be achieved
by separating an image I to its R and L components, scaling down
the L component to obtain a new illuminance function L̃, and re-
multiplying:

Ĩ(x,y) = R(x,y) L̃(x,y).

Intuitively, this reduces the contrast between brightly illuminated
areas and those in deep shadow, while leaving the contrasts due to
texture and reflectance undistorted. Tumblin et al. [1999] use this
approach for displaying high-contrast synthetic images, where the
material properties of the surfaces and the illuminance are known
at each point in the image, making it possible to compute a per-
fect separation of an image to various layers of lighting and surface
properties.
Unfortunately, computing such a separation for real images is

an ill posed problem [Ramamoorthi and Hanrahan 2001]. Conse-
quently, any attempt to solve it must make some simplifying as-
sumptions regarding R, L, or both. For example, homomorphic
filtering [Stockham 1972], an early image enhancement technique,
makes the assumption that L varies slowly across the image, in con-
trast to R that varies abruptly. This means that R can be extracted by
applying a high-pass filter to the logarithm of the image. Exponenti-
ating the result achieves simultaneous dynamic range compression
and local contrast enhancement. Similarly, Horn [1974] assumes
that L is smooth, while R is piecewise-constant, introducing infi-
nite impulse edges in the Laplacian of the image’s logarithm. Thus,
L may be recovered by thresholding the Laplacian. Of course, in
most natural images the assumptions above are violated: for ex-
ample, in sunlit scenes illuminance varies abruptly across shadow
boundaries. This means that L also has high frequencies and intro-
duces strong impulses into the Laplacian. As a result, attenuating
only the low frequencies in homomorphic filtering may give rise
to strong “halo” artifacts around strong abrupt changes in illumi-
nance, while Horn’s method incorrectly interprets sharp shadows
as changes in reflectance.
More recently, Jobson et al. [1997] presented a dynamic range

compression method based on a multiscale version of Land’s
“retinex” theory of color vision [Land and McCann 1971]. Retinex
estimates the reflectances R(x,y) as the ratio of I(x,y) to its low-
pass filtered version. A similar operator was explored by Chiu
et al. [1993], and was also found to suffer from halo artifacts and
dark bands around small bright visible light sources. Jobson et al.
compute the logarithm of the retinex responses for several low-pass
filters of different sizes, and linearly combine the results. The lin-
ear combination helps reduce halos, but does not eliminate them
entirely. Schlick [1994] and Tanaka and Ohnishi [1997] also exper-
imented with spatially variant operators and found them to produce
halo artifacts.
Pattanaik and co-workers [1998] describe an impressively com-

prehensive computational model of human visual system adaptation

2For example, the reflectance of black velvet is about 0.01, while that of

snow is roughly 0.93.
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Figure 2: Belgium House: An HDR radiance map of a lobby com-
pressed for display by our method (top), the method ofWard Larson
et al. (middle) and the LCIS method (bottom).

and spatial vision for realistic tone reproduction. Their model en-
ables display of HDR scenes on conventional display devices, but
the dynamic range compression is performed by applying different
gain-control factors to each bandpass, which also results in halos
around strong edges. In fact, DiCarlo and Wandell [2001], as well
as Tumblin and Turk [1999] demonstrate that this is a fundamental
problem with any multi-resolution operator that compresses each
resolution band differently.

In order to eradicate the notorious halo artifacts Tumblin and
Turk [1999] introduce the low curvature image simplifier (LCIS) hi-
erarchical decomposition of an image. Each level in this hierarchy
is generated by solving a partial differential equation inspired by
anisotropic diffusion [Perona and Malik 1990] with a different dif-
fusion coefficient. The hierarchy levels are progressively smoother
versions of the original image, but the smooth (low-curvature) re-
gions are separated from each other by sharp boundaries. Dynamic
range compression is achieved by scaling down the smoothest ver-
sion, and then adding back the differences between successive lev-
els in the hierarchy, which contain details removed by the simpli-
fication process. This technique is able to drastically compress the
dynamic range, while preserving the fine details in the image. How-
ever, the results are not entirely free of artifacts. Tumblin and Turk
note that weak halo artifacts may still remain around certain edges
in strongly compressed images. In our experience, this technique
sometimes tends to overemphasize fine details. For example, in the
bottom image of Figure 2, generated using this technique, certain
features (door, plant leaves) are surrounded by thin bright outlines.
In addition, the method is controlled by no less than 8 parameters,
so achieving an optimal result occasionally requires quite a bit of
trial-and-error. Finally, the LCIS hierarchy construction is compu-
tationally intensive, so compressing a high-resolution image takes
a substantial amount of time.

3 Gradient domain HDR compression

Informally, our approach relies on the widely accepted assumptions
[DiCarlo and Wandell 2001] that the human visual system is not
very sensitive to absolute luminances reaching the retina, but rather
responds to local intensity ratio changes and reduces the effect of
large global differences, which may be associated with illumination
differences.
Our algorithm is based on the rather simple observation that any

drastic change in the luminance across a high dynamic range im-
age must give rise to large magnitude luminance gradients at some
scale. Fine details, such as texture, on the other hand, correspond
to gradients of much smaller magnitude. Our idea is then to iden-
tify large gradients at various scales, and attenuate their magnitudes
while keeping their direction unaltered. The attenuation must be
progressive, penalizing larger gradients more heavily than smaller
ones, thus compressing drastic luminance changes, while preserv-
ing fine details. A reduced high dynamic range image is then re-
constructed from the attenuated gradient field.
It should be noted that all of our computations are done on the

logarithm of the luminances, rather than on the luminances them-
selves. This is also the case with most of the previous methods
reviewed in the previous section. The reason for working in the log
domain is twofold: (a) the logarithm of the luminance is a (crude)
approximation to the perceived brightness, and (b) gradients in the
log domain correspond to ratios (local contrasts) in the luminance
domain.
We begin by explaining the idea in 1D. Consider a high dynamic

range 1D function. We denote the logarithm of this function by
H(x). As explained above, our goal is to compress large magnitude
changes in H, while preserving local changes of small magnitude,
as much as possible. This goal is achieved by applying an appro-
priate spatially variant attenuating mapping Φ to the magnitudes of
the derivatives H ′(x). More specifically, we compute:

G(x) = H ′(x) Φ(x).

Note that G has the same sign as the original derivative H ′ every-
where, but the magnitude of the original derivatives has been al-
tered by a factor determined by Φ, which is designed to attenuate
large derivatives more than smaller ones. Actually, as explained in
Section 4, Φ accounts for the magnitudes of derivatives at different
scales.


