Soft shadows

Lecture 9

Heckbert \& Herf Soft Shadows

Soft Shadows: Heckbert \& Herf

Figure 1: Hard shadow images from 2×2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows on receiver. Center: Approximate soft shadows resulting from 2×2 grid of sample points; the average of the four hard shadow images in
Figure 1 . Right: Correct soft shadow image (generated with 16×16 sampling). This image is used as the texture on the receiver at left.

Cornell CS569 Spring 2008

Percentage closer filtering

b) Percentage closer filtering

Figure 2. Ordinary filtering versus percentage closer filtering.

Computing the values: RT

```
For each triangle {
    Compute center of triangle
    Generate rays over hemisphere
    Occlusion = 0
    For each ray
        If ray intersects objects ++occlusion
    Occlusion /= nRays
}
```

Computing the values: SM

512 samples

Computing the values: SM

- Create shadow maps from N lights
- Check visibility of point wrt each light and determine occlusion: accumulation buffer

4 samples

32 samples
© Kavita Bala, Computer Science, Cornell University

Ambient occlusion: using the values

- Modulate diffuse shading
- Kd * (1-occlusion) * N.L
- Modulate irradiance map lookup

What about B?

- The unoccluded direction gives an idea of where the main illumination is coming from
- This is called the "bent normal"

© Kavita Bala, Computer Science, Cornell University

Computing the values: RT
For each triangle \{
Compute center of triangle
Generate rays over hemisphere
Occlusion = 0
Avg dir $=(0,0,0)$
For each ray
If ray intersects objects ++occlusion
Else avg dir $+=$ ray.dir
Occlusion /= nRays
Normalize (avg dir)
\}

ambient occlusion map

