
© 2008 Steve Marschner

Lecture 9

Cornell University CS 569: Interactive Computer Graphics

Lecture 9 •  Cornell CS569 Spring 2008

Soft shadows

1 Lecture 9 •  Cornell CS569 Spring 2008

Soft Shadows: Heckbert & Herf

2

[M
ic

ha
el

 H
er

f a
nd

 P
au

l H
ec

kb
er

t]

Figure 1: Hard shadow images from 2 2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
on receiver. Center: Approximate soft shadows resulting from 2 2 grid of sample points; the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16 16 sampling). This image is used as the texture on the receiver at left.

pass to determine if a given 3-D point is illuminated with respect to
each light source. The transformation of points from one coordinate
system to another can be accelerated using texture mapping hard-
ware [17]. This latter method, by Segal et al., achieves real-time
rates, and is the other leading method for interactive shadows. Soft
shadows canbe generated on a graphicsworkstation by rendering the
scene multiple times, using different points on the extended light
source, averaging the resulting images using accumulation buffer
hardware [11].
A variation of the shadow volume approach is to intersect these

volumes with surfaces in the scene to precompute the umbra and
penumbra regions on each surface [16]. During the final rendering
pass, illumination integrals are evaluated at a sparse sampling of
pixels.

Precomputation of Shading. Precomputation can be taken fur-
ther, computing not just visibility but also shading. This is most
relevant to diffuse scenes, since their shading is view-independent.
Some of these methods compute visibility continuously, while oth-
ers compute it discretely.
Several researchers have explored continuous visibility methods

for soft shadow computation and radiosity mesh generation. With
this approach, surfaces are subdivided into fully lit, penumbra, and
umbra regions by splitting along lines or curves where visibility
changes. In Chin and Feiner’s soft shadow method, polygons are
split using BSP trees, and these sub-polygons are then pre-shaded
[6]. They achieved rendering times of under a minute for simple
scenes. Drettakis and Fiume usedmore sophisticated computational
geometry techniques to precompute their subdivision, and reported
rendering times of several seconds [9].

Most radiosity methods discretize each surface into a mesh of
elements and then use discrete methods such as ray tracing or
hemicubes to compute visibility. The hemicube method computes
visibility from a light source point to an entire hemisphere by pro-
jecting the scene onto a half-cube [7]. Much of this computation
can be done in hardware. Radiosity meshes typically do not resolve
shadows well, however. Typical artifacts are Mach bands along the
mesh element boundaries and excessively blurry shadows. Most
radiosity methods are not fast enough to support interactive changes
to the geometry, however. Chen’s incremental radiosity method is
an exception [5].
Our own method can be categorized next to hemicube radiosity

methods, since it also precomputes visibility discretely. Its tech-
nique for computing visibility also has parallels to the method of
flattening objects to a plane.

2.2 Graphics Hardware

Current graphics hardware, such as the Silicon Graphics Reality
Engine [1], can projective-transform, clip, shade, scan convert, and
texture tens of thousands of polygons in real-time (in 1/30 sec.).
We would like to exploit the speed of this hardware to simulate soft
shadows.
Typically, such hardware supports arbitrary 4 4 homogeneous

transformations of planar polygons, clipping to any truncated pyra-
midal frustum (right or oblique), and scan conversion with z-
buffering or overwriting. On SGI machines, Phong shading (once
per pixel) is not possible, but faceted shading (once per polygon) and
Gouraud shading (once per vertex) are supported. Phong shading

2

Lecture 9 •  Cornell CS569 Spring 2008

Heckbert & Herf Soft Shadows

[Michael Herf and Paul Heckbert]

3 Lecture 9 •  Cornell CS569 Spring 2008

Percentage closer !ltering

4

~ SIGGRAPH '87, Anaheim, July 27-31, 1987 

Light source 

]~"~-~-- Camera 

(a) View from high above the scene. (b) View from the light source. (c) View from the camera. 

Figure 1. Points of view for a simple scene. 

Ordinarily, texture maps are accessed by filtering the texture values 

over some region of the texture map. However, depth maps for sha- 

dow calculations cannot be accessed in this manner. The main prob- 

lem is that the filtered depth value would be compared to the depth 
of the surface being rendered to determine whether or not the surface 
is in shadow at that point. The result of this comparison would be 

binary, making soft antialiased edges impossible. Another problem 

is that filtered depth values along the edges of objects would bear no 

relation to the geometry of the scene. 

Our solution reverses the order of the filtering and comparison steps. 
The z values of the depth map across the entire region are first com- 

pared against the depth of  the surface being rendered. This sample 
transformation converts the depth map under the region into a binary 

image, which is then filtered to give the proportion of  the region in 

shadow. The resulting shadows have soft, antialiased edges. 

The difference between ordinary texture map filtering and percentage 

closer filtering is shown schematically in Figure 2. In this example, 

the distance from the light source to the surface to be shadowed is 
z = 49.8. The region in the depth map that it maps onto (shown on 

the left in the figures) is a square measuring 3 pixels by 3 pixels.* 

Ordinary filtering would filter the depth map values to get 22.9 and 

then compare that to 49.8 to end up with a value of  1 meaning that 

100% of  the surface was in shadow. Percentage closer filtering com- 

pares each depth map value to 49.8 and then filters the array of  

binary values to arrive at a value of .55 meaning that 55% of the sur- 

face is in shadow. 

A square region and box filtering are used to simplify this example. The real 
algorithm, as described in subsequent sections, uses more sophisticated 
techniques. 

50.2 50.0 50.0 

J 
, x -4-----,---"- 

50.1 1.2 1.1 

1.3 1.4 t .2 

Surface at z = 49.8 

) 
22.9 ~ 1 

a) Ordinary texture map filtering. Does not work for depth maps. 

50.2 

50.1 

1.3 

50.0 50.0 

1.2 1.1 

1.4 1.2 

Surface at z = 49.8 

/ 
J 0 0 0 

1 1 1 

~ .55 

Sample Transform Step 

b) Percentage closer filtering. 

Figure 2. Ordinary filtering versus percentage closer filtering. 

284 

[R
ee

ve
s e

t a
l. 

87
]



Lecture 9 •  Cornell CS569 Spring 2008 5

[B
un

ne
ll 

& 
Pe

lla
ci

ni
, G

PU
 G

em
s]

Lecture 9 •  Cornell CS569 Spring 2008 6

[B
un

ne
ll 

& 
Pe

lla
ci

ni
, G

PU
 G

em
s]

Lecture 9 •  Cornell CS569 Spring 2008 7

To appear in the ACM SIGGRAPH conference proceedings

Structured importance sampling with 300 samples Stratified w/ 300 Importance w/ 300 LightGen w/ 300 LightGen w/ 3000 Structured w/ 100 Structured w/ 300

The Galileo map LightGen w/ 300 samples Structured importance sampling w/ 300 samples

Figure 5: A teapot in Galileo’s tomb rendered using different sampling strategies. No sorting or jittering has been used for this comparison. The
large image in the top row has been computed using structured importance sampling with 300 samples, which we verified to be indistinguishable from a

reference image computed with 100,000 samples using standard Monte Carlo sampling. The red squares show two regions that have been rendered using

different sampling techniques as close-ups in the small images on the right. From left to right these images have been rendered using naive stratified

sampling, illumination based stratified importance sampling and using LightGen with 300 samples, LightGen with 3000 samples, structured importance

sampling with 100 samples and 300 samples. Both Monte Carlo techniques produce significant statistical noise even for this simple model, LightGen

shows banding in the shadows with both 300 and 3000 samples (since too few samples are placed at the bright lights), structured importance sampling

looks convincing with just 100 samples and with 300 samples the result is indistinguishable from a reference image. The bottom row shows from left

to right, the Galileo map, the lights created by LightGen, and the stratum centers created using our method. Note how our stratification method samples

the bright lights much more densely than LightGen. This is the reason why the shadows with structured importance sampling are more accurate.

1 sample 10 samples 100 samples 1000 samples BRDF w/ 1000 samples

Structured importance sampling with 300 samples 1 sample 10 samples 100 samples 300 samples Sorted 4.7 sample rays/pixel

Figure 6: A glossy buddha in the Grace environment map. The large image on the left is our sampling technique with 300 samples, which is practically
indistinguishable from a reference image. The two rows show close-ups of the head rendered with an increasing number of samples. The top row is

stratified importance sampling with 1, 10, 100 and 1000 samples as well as BRDF based importance sampling with 1000 samples. The bottom row

shows structured importance sampling with 1, 10, 100, and 300 samples per pixel, as well as a version rendered with sorting and thresholding resulting

in an average of just 4.7 samples per pixel. Note how structured importance sampling results in noise free images and quickly converges to the final

result while the best Monte Carlo sampling techniques are noisy even when using 1000 samples.

No jittering Jittering

Figure 7: Jittering can be used to eliminate banding at low sample
counts at the cost of adding noise along the shadow boundaries.

This image is the same close-up of the shadow as in Figure 5 using

just 50 samples. The image on the left is without jittering and the

image on the right has been rendered using jittering of the shadow

ray.

Figure 8: A snow covered mountain model illuminated at sun-
rise. This model has more than 2 million triangles, and the im-

age has been rendered in 640x512 with full global illumination

in 75 seconds.

8

To appear in the ACM SIGGRAPH conference proceedings

Structured importance sampling with 300 samples Stratified w/ 300 Importance w/ 300 LightGen w/ 300 LightGen w/ 3000 Structured w/ 100 Structured w/ 300

The Galileo map LightGen w/ 300 samples Structured importance sampling w/ 300 samples

Figure 5: A teapot in Galileo’s tomb rendered using different sampling strategies. No sorting or jittering has been used for this comparison. The
large image in the top row has been computed using structured importance sampling with 300 samples, which we verified to be indistinguishable from a

reference image computed with 100,000 samples using standard Monte Carlo sampling. The red squares show two regions that have been rendered using

different sampling techniques as close-ups in the small images on the right. From left to right these images have been rendered using naive stratified

sampling, illumination based stratified importance sampling and using LightGen with 300 samples, LightGen with 3000 samples, structured importance

sampling with 100 samples and 300 samples. Both Monte Carlo techniques produce significant statistical noise even for this simple model, LightGen

shows banding in the shadows with both 300 and 3000 samples (since too few samples are placed at the bright lights), structured importance sampling

looks convincing with just 100 samples and with 300 samples the result is indistinguishable from a reference image. The bottom row shows from left

to right, the Galileo map, the lights created by LightGen, and the stratum centers created using our method. Note how our stratification method samples

the bright lights much more densely than LightGen. This is the reason why the shadows with structured importance sampling are more accurate.

1 sample 10 samples 100 samples 1000 samples BRDF w/ 1000 samples

Structured importance sampling with 300 samples 1 sample 10 samples 100 samples 300 samples Sorted 4.7 sample rays/pixel

Figure 6: A glossy buddha in the Grace environment map. The large image on the left is our sampling technique with 300 samples, which is practically
indistinguishable from a reference image. The two rows show close-ups of the head rendered with an increasing number of samples. The top row is

stratified importance sampling with 1, 10, 100 and 1000 samples as well as BRDF based importance sampling with 1000 samples. The bottom row

shows structured importance sampling with 1, 10, 100, and 300 samples per pixel, as well as a version rendered with sorting and thresholding resulting

in an average of just 4.7 samples per pixel. Note how structured importance sampling results in noise free images and quickly converges to the final

result while the best Monte Carlo sampling techniques are noisy even when using 1000 samples.

No jittering Jittering

Figure 7: Jittering can be used to eliminate banding at low sample
counts at the cost of adding noise along the shadow boundaries.

This image is the same close-up of the shadow as in Figure 5 using

just 50 samples. The image on the left is without jittering and the

image on the right has been rendered using jittering of the shadow

ray.

Figure 8: A snow covered mountain model illuminated at sun-
rise. This model has more than 2 million triangles, and the im-

age has been rendered in 640x512 with full global illumination

in 75 seconds.

8

[A
ga

rw
al

, R
am

am
oo

rt
hi

, B
el

on
gi

e,
 &

 Je
ns

en
 2

00
3]

© Kavita Bala, Computer Science, Cornell University

Ambient Occlusion: Main Idea

• At each point find
–Fraction of hemisphere that is occluded

–Visible fraction of hemisphere: (1-occlusion)

–And average unoccluded direction B
!Use B for lighting (see later)



© Kavita Bala, Computer Science, Cornell University

Computing the values: RT

For each triangle {
Compute center of triangle

Generate rays over hemisphere

Occlusion = 0

For each ray 
If ray intersects objects   ++occlusion

Occlusion /= nRays

}

© Kavita Bala, Computer Science, Cornell University

Computing the values: SM

4 samples 32 samples

• Create shadow maps from N lights

• Check visibility of point wrt each light and 
determine occlusion: accumulation buffer

© Kavita Bala, Computer Science, Cornell University

Computing the values: SM

512 samples

© Kavita Bala, Computer Science, Cornell University

Ambient occlusion: using the values

• Modulate diffuse shading
–Kd * (1-occlusion) * N.L

• Modulate irradiance map lookup



© Kavita Bala, Computer Science, Cornell University

What about B?

• The unoccluded direction gives an idea of 
where the main illumination is coming from

• This is called the “bent normal”

© Kavita Bala, Computer Science, Cornell University

Computing the values: RT

For each triangle {
Compute center of triangle

Generate rays over hemisphere

Occlusion = 0

Avg dir = (0,0,0)

For each ray 
If ray intersects objects   ++occlusion

Else avg dir += ray.dir

Occlusion /= nRays

Normalize (avg dir)

}

Lecture 9 •  Cornell CS569 Spring 2008 15

[C
S 

46
7 

sli
de

s]

unshadowed di!use shading

Lecture 9 •  Cornell CS569 Spring 2008 16

[C
S 

46
7 

sli
de

s]

ambient occlusion map



Lecture 9 •  Cornell CS569 Spring 2008 17

[C
S 

46
7 

sli
de

s]

combined di!use and ambient


