
© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Lecture 4

Cornell University CS 569: Interactive Computer Graphics

Rotations (and other transformations)

1

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Rotation as rotation matrix

• Storage
9 "oats
orthogonal and unit length columns and rows
inverse is transpose

• Apply to vector
matrix–vector multiply (15 "ops)

• Compose rotations
matrix–matrix multiply (45 "ops)

• Pro
simple; e#cient to apply; easy to compose

• Con
3x redundant; slow to construct and compose; interpolation ill-behaved

3

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Rotation as Euler angles

• Storage
3 "oats

• Apply to vector
three rotations

• Compose rotations
ouch!

• Pro
simple; compact; e#cient to apply

• Con
gimbal lock; hard to construct; hard to compose; interpolation very ill-behaved

5

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Rodrigues’ rotation formula

7

[L
eo

n
ar

d
 M

cM
ill

an
]

R(a, θ)x = (cos θ)x + (sin θ)(a× x) + (1− cos θ)(a · x)a

R(a, θ) = (cos θ)I + (sin θ)ã + (1− cos θ)aaT

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Rotation as axis & angle

• Storage
unit vector axis + angle (4 "oats), or
axis scaled by angle (3 "oats)

• Apply to vector
Rodrigues’ formula (32 "ops + cos/sin/sqrt for setup)

• Compose rotations
ouch!

• Pro
simple; reasonably e#cient to apply; construction simple

• Con
composition not obvious

8

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Quaternions for Rotation

• A quaternion is an extension of complex numbers

• Review: complex numbers

10

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

ONB in quaternions

• Each of i, j and k are square root of –1

• Cross-multiplication is like cross product

11

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

ONB in quaternions

• A quaternion is an extension of complex numbers: 4D space

12

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Quaternion Properties

• Associative

• Not commutative

• Unit quaternion

13

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

• Linear combination of 1, i, j, k

• Multiplication

Quaternion for Rotation

14

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Quaternion for Rotation

• Rotate about axis a by angle !

15

[K
av

it
a

B
al

a]
[L

eo
n
ar

d
 M

cM
ill

an
]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Rotation Using Quaternion

• A point in space is a quaternion with 0 scalar

• Composing rotations
q1 and q2 are two rotations
First, q1 then q2

16

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Matrix for quaternion

17

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Quaternion spline interpolation

18

[R
am

am
o
o
rt

h
i
&

 B
ar

r
SI

G
G

R
A

P
H

 9
7
]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Rotation as quaternion

• Storage
coe$s of 1, i, j, k (4 "oats)
unit vector

• Apply to vector
quaternion rotation formula

• Compose rotations
quaternion multiplication

• Pro
reasonably e#cient to apply; construction simple; well-behaved interpolation

• Con
di#cult to understand at %rst

19 © 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Hierarchical Transforms
• Articulated body

• Every object has local frame of reference
Example local coordinate system at center of box

UA

LA

Tr

H

F

UL

LL

20

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

Tree of Transforms

Trunk

UA

LA

F

UL

LL

H UA

LA

Tr

H

F

UL

LL

Nodes are model components

Edges are transformations

21

[K
av

it
a

B
al

a]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 4

DAG/Instancing

UA

LA

Tr

H

F

UL

LL

Trunk

UA

LA

F

UL

LL

Cube
Cyl

Cyl

22

[K
av

it
a

B
al

a]

© Kavita Bala, Computer Science, Cornell University

Trackball

• Pan/Zoom/Orbit are not enough

• Want to inspect an object

• Want to rotate about some axis and angle

• But only have 2 degrees of freedom

© Kavita Bala, Computer Science, Cornell University

Trackball

• There is a ball in front of image plane

• Grab the ball to move camera

O

(0,0,0)

eye

Image plane

© Kavita Bala, Computer Science, Cornell University

How does it work?

P0

P1

P0

P1

© Kavita Bala, Computer Science, Cornell University

Algorithm

• Assume circle in screen

• Assume mouse moves from P0 to P1
• Get 3D points P0 and P1 from equation
• Axis a = (P0-O) x (P1-O)

• Angle theta = k ||P1-P0||
• Rotate by theta around a
• P0 (next frame) = P1

(x-Ox)
2 + (y-Oy)

2 + (z-Oz)
2 = R2

© Kavita Bala, Computer Science, Cornell University

Trackball Terms

P0

P1

O

P0= (x0, y0, z0)

axisrotation = (P1-O)"(P0-O)

anglerotation= k |D|

D = P1-P0

D

R

P1= (x1, y1, z1)

image plane

(x-Ox)
2 + (y-Oy)

2 + (z-Oz)
2 = R2

© Kavita Bala, Computer Science, Cornell University

Trackball Terms

O = (xres/2, yres/2, zc)

(x-Ox)
2 + (y-Oy)

2 + (z-Oz)
2 = R2

Z-Oz = sqrt(R2-(x-Ox)
2 + (y-Oy)

2)

O is arbitrary
P0

P1

O

D

R

xres

yres

z = zc image
plane

