
© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

Lecture 1

Cornell University CS 569: Interactive Computer Graphics

Introduction

1 © 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 2

[J
o
h
n
 C

. S
to

n
e
, U

IU
C

]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 3

NASA

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 4

University of Calgary

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 5

NASA Ames Army Research Lab—IES

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 6

NIST

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 7

Autodesk Maya (Wikimedia—Aaron1a12)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 8

ID Software—Quake 4 (2005)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 9

TimeGate Studios—F.E.A.R. Extraction Point (2006)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 10

Valve—Half Life 2 (2006)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 11

Ubisoft—Assassin’s Creed (2007)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 12

Valve—Portal (2007)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

How To Draw a Triangle, c. 1985

14

• Transform vertices to screen coordinates

• Find all the pixels covered by the triangle

• Fill all the pixels with the triangle’s color

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

How To Draw a Triangle, c. 1988

15

• Perform lighting calculations to "nd vertex colors

• Transform vertices to screen coordinates

• Find all the pixels covered by the triangle

• Fill all unoccluded pixels with the interpolated vertex colors
and depth

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

How To Draw a Triangle, c. 1992

16

• Perform lighting calculations to "nd vertex colors

• Transform vertices to screen coordinates

• Find all the pixels covered by the triangle

• Look up a texture map value

• Fill all unoccluded pixels with a function of the texture and the
interpolated vertex colors, as well as the depth

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

How To Draw a Triangle, c. 1999

17

• Perform elaborate lighting calculations to "nd vertex colors

• Transform vertices to screen coordinates

• Find all the pixels covered by the triangle

• Look up a value from one or more 1D, 2D, or 3D texture maps

• Fill all unoccluded pixels with a complicated, adjustable function
of the textures and the interpolated vertex colors, as well as the
depth

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 18

Pixar—Ratatouille (2007)

Pixar’s RenderMan

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

How To Draw a Triangle in 2008

19

• Execute a vertex program over all the vertices

• Find all the pixels covered by the triangle

• Execute a fragment program over all those pixels

• Fill all unoccluded pixels with the resulting color and depth

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

Development of Hardware Capabilities

21

• Workstation era
’85–’87: transform and render #at-shaded points, lines, polygons (no z bu$er)
’88–’91: transform, light, and render smooth shaded polygons
’92–: transform, light, and render texture-mapped, antialiased polygons

• PC era
’95–’98: render texture-mapped polygons

’99–’00: transform, light, and render texture-mapped, antialiased polygons
’01–’06: execute vertex and fragment shaders over antialiased polygons
’07–: execute geometry, vertex, and fragment shaders over antialiased polygons

App Vertex Rasterize Fragment Blend Frame
bu"er

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 22

[I
n
te

rn
at

io
n
al

 T
ec

h
n
o
lo

gy
 R

o
ad

m
ap

 f
o
r

Se
m

ic
o
n
d
u
ct

o
rs

 2
0
0
7
]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 23

[I
n
te

rn
at

io
n
al

 T
ec

h
n
o
lo

gy
 R

o
ad

m
ap

 f
o
r

Se
m

ic
o
n
d
u
ct

o
rs

 2
0
0
7
]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

SGI RealityEngine Architecture (1992)

24

geometry

board

Command

Processor

Geometry

Engines

Fragment

Generators

Triangle Bus

Image

Engines

display generator board

System Bus

video

raster memory boardraster memory board

Figure 1. Board-level block diagram of an intermediate configu-

ration with 8 Geometry Engines on the geometry board, 2 raster

memory boards, and a display generator board.

2 Architecture

The RealityEngine system is a 3, 4, or 6 board graphics accelerator

that is installed in a MIPS RISC workstation. The graphics system

and one or more MIPS processors are connected by a single system

bus. Figure 1 is a board-level block diagram of the RealityEngine

graphics accelerator. The geometry board comprises an input FIFO,

the Command Processor, and 6, 8, or 12 Geometry Engines. Each

raster memory board comprises 5 Fragment Generators (each with

its own complete copy of the texture memory), 80 Image Engines,

and enough framebuffer memory to allocate 256 bits per pixel to a

framebuffer. The display generator board supports all

video functions, including video timing, genlock, color mapping,

and digital-to-analog conversion. Systems can be configured with

1, 2, or 4 raster memory boards, resulting in 5, 10, or 20 Fragment

Generators and 80, 160, or 320 Image Engines.

To get an initial notion of how the system works, let’s follow

a single triangle as it is rendered. The position, color, normal,

and texture coordinate commands that describe the vertexes of the

triangle in object coordinates are queued by the input FIFO, then

interpreted by the Command Processor. The Command Processor

directs all of this data to one of the Geometry Engines, where the

coordinates andnormals are transformed to eye coordinates, lighted,

transformed to clip coordinates, clipped, and projected to window

coordinates. The associated texture coordinates are transformed

by a third matrix and associated with the window coordinates and

colors. Then window coordinate slope information regarding the

red, green, blue, alpha, depth, and texture coordinates is computed.

The projected triangle, ready for rasterization, is then output from

the Geometry Engine and broadcast on the Triangle Bus to the 5,

10, or 20 Fragment Generators. (We distinguish between pixels

generated by rasterization and pixels in the framebuffer, referring to

the former as fragments.) Each Fragment Generator is responsible

for the rasterization of 1/5, 1/10, or 1/20 of the pixels in the frame-

buffer, with the pixel assignments finely interleaved to insure that

even small triangles are partially rasterized by each of the Fragment

Generators. Each Fragment Generator computes the intersection of

the set of pixels that are fully or partially covered by the triangle and

the set of pixels in the framebuffer that it is responsible for, gener-

ating a fragment for each of these pixels. Color, depth, and texture

coordinates are assigned to each fragment based on the initial and

slopevalues computedby theGeometry Engine. A subsamplemask

is assigned to the fragment based on the portion of each pixel that

is covered by the triangle. The local copy of the texture memory is

indexed by the texture coordinates, and the 8 resulting samples are

reduced by linear interpolation to a single color value, which then

modulates the fragment’s color.

The resulting fragments, each comprising a pixel coordinate, a

color, a depth, and a coverage mask, are then distributed to the

Image Engines. Like the Fragment Generators, the Image Engines

are each assigned a fixed subset of the pixels in the framebuffer.

These subsets are themselves subsets of the Fragment Generator

allocations, so that each Fragment Generator communicates only

with the 16 Image Engines assigned to it. Each Image Engine

manages its own dynamic RAM that implements its subset of the

framebuffer. When a fragment is received by an Image Engine,

its depth and color sample data are merged with the data already

stored at that pixel, and a new aggregate pixel color is immediately

computed. Thus the image is complete as soon as the last primitive

has been rendered; there is no need for a final framebuffer operation

to resolve the multiple color samples at each pixel location to a

single displayable color.

Before describingeach of the rendering operations in more detail,

we make the following observations. First, after it is separated by

theCommandProcessor, the streamof rendering commandsmerges

only at the Triangle Bus. Second, triangles of sufficient size (a

function of the number of raster memory boards) are processed by

almost all the processors in the system, avoiding only 5, 7, or 11

Geometry Engines. Finally, small to moderate FIFO memories are

included at the input and output of each Geometry Engine, at the

input of each Fragment Generator, and at the input of each Image

Engine. These memories smooth the flow of rendering commands,

helping to insure that the processors are utilized efficiently.

2.1 Command Processor

That the Command Processor is required at all is primarily a func-

tion of the OpenGLTM [8][7] graphics language. OpenGL is modal,

meaning that much of the state that controls rendering is included

in the command stream only when it changes, rather than with

each graphics primitive. The Command Processor distinguishes

between two classes of this modal state. OpenGL commands that

are expected infrequently, such as matrix manipulations and light-

ing model changes, are broadcast to all the Geometry Engines.

OpenGL commands that are expected frequently, such as vertex

colors, normals, and texture coordinates, are shadowedby the Com-

mand Processor, and the current values are bundled with each ren-

dering command that is passed to an individual Geometry Engine.

The Command Processor also breaks long connected sequences of

line segments or triangles into smaller groups, each group passing

to a single Geometry Engine. The size of these groups is a trade-

off between the increased vertex processing efficiency of larger

groups (due to shared vertexes within a group) and the improved

load balancing that results from smaller groups. Finally, because

the Command Processor must interpret each graphics command, it

is also able to detect invalid command sequences and protect the

110

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1

SGI In!niteReality Architecture (1996)

25

RealityEngine; there are three distinct board types: the Geometry,

Raster Memory, and Display Generator boards (Figure 1).

The Geometry board comprises a host computer interface, com-

mand interpretation and geometry distribution logic, and four

Geometry Engine processors in a MIMD arrangement. Each Ras-

ter Memory board comprises a single fragment generator with a

single copy of texture memory, 80 image engines, and enough

framebuffer memory to allocate 512 bits per pixel to a 1280x1024

framebuffer. The display generator board contains hardware to

drive up to eight display output channels, each with its own video

timing generator, video resize hardware, gamma correction, and

digital-to-analog conversion hardware.

Systems can be configured with one, two or four raster memory

boards, resulting in one, two, or four fragment generators and 80,

160, or 320 image engines.

Figure 1: Board-level block diagram of the maximum

configuration with 4 Geometry Engines, 4 Raster Memory boards,

and a Display Generator board with 8 output channels.

2.1 Host Interface

There were significant system constraints that influenced the archi-

tectural design of InfiniteReality. Specifically, the graphics system

had to be capable of working on two generations of host platforms.

The Onyx2 differs significantly from the shared memory multipro-

cessor Onyx in that it is a distributed shared memory multiproces-

sor system with cache-coherent non-uniform memory access. The

most significant difference in the graphics system design is that the

Onyx2 provides twice the host-to-graphics bandwidth (400MB/sec

vs. 200MB/sec) as does Onyx. Our challenge was to design a sys-

tem that would be matched to the host-to-graphics data rate of the

Onyx2, but still provide similar performance with the limited I/O

capabilities of Onyx.

We addressed this problem with the design of the display list sub-

system. In the RealityEngine system, display list processing had

been handled by the host. Compiled display list objects were

stored in host memory, and one of the host processors traversed the

display list and transferred the data to the graphics pipeline using

programmed I/O (PIO).

With the InfiniteReality system, display list processing is handled

in two ways. First, compiled display list objects are stored in host

memory in such a way that leaf display objects can be “pulled”

into the graphics subsystem using DMA transfers set up by the

Host Interface Processor (Figure 1). Because DMA transfers are

faster and more efficient than PIO, this technique significantly

reduces the computational load on the host processor so it can be

better utilized for application computations. However, on the origi-

nal Onyx system, DMA transfers alone were not fast enough to

feed the graphics pipe at the rate at which it could consume data.

The solution was to incorporate local display list processing into

the design.

Attached to the Host Interface Processor is 16MB of synchronous

dynamic RAM (SDRAM). Approximately 15MB of this memory

is available to cache leaf display list objects. Locally stored display

lists are traversed and processed by an embedded RISC core.

Based on a priority specified using an OpenGL extension and the

size of the display list object, the OpenGL display list manager

determines whether or not a display list object should be cached

locally on the Geometry board. Locally cached display lists are

read at the maximum rate that can be consumed by the remainder

of the InfiniteReality pipeline. As a result, the local display list

provides a mechanism to mitigate the host to graphics I/O bottle-

neck of the original Onyx. Note that if the total size of leaf display

list objects exceeds the resident 15MB limit, then some number of

objects will be pulled from host memory at the reduced rate.

2.2 Geometry Distribution

The Geometry Distributor (Figure 1) passes incoming data and

commands from the Host Interface Processor to individual Geome-

try Engines for further processing. The hardware supports both

round-robin and least-busy distribution schemes. Since geometric

processing requirements can vary from one vertex to another, a

least-busy distribution scheme has a slight performance advantage

over round-robin. With each command, an identifier is included

which the Geometry-Raster FIFO (Figure 1) uses to recreate the

original order of incoming primitives.

2.3 Geometry Engines

When we began the design of the InfiniteReality system, it became

apparent that no commercial off-the-shelf floating point processors

were being developed which would offer suitable price/perfor-

mance. As a result, we chose to implement the Geometry Engine

Processor as a semicustom application specific integrated circuit

(ASIC).

The heart of the Geometry Engine is a single instruction multiple

datapath (SIMD) arrangement of three floating point cores, each of

which comprises an ALU and a multiplier plus a 32 word register

Fragment Generator Fragment Generator Fragment Generator Fragment Generator

Vertex Bus

Image
Engines

Geometry!Raster FIFO

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry
Engine

Geometry Distributor

Host Interface Processor

Host System Bus

Geometry Board

Raster Memory Board Raster Memory Board Raster Memory BoardRaster Memory Board

Display Generator
Board

De!Interleaver

Display
Channel

Display
Channel

Display
Channel

Display
Channel

Display
Channel

Display
Channel

Display
Channel

Display
Channel

Vid

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 26

474

First, commands, textures, and vertex data are received from the host CPU through
shared buffers in system memory or local frame-buffer memory. A command stream is
written by the CPU, which initializes and modifies state, sends rendering commands, and
references the texture and vertex data. Commands are parsed, and a vertex fetch unit is
used to read the vertices referenced by the rendering commands. The commands, vertices,
and state changes flow downstream, where they are used by subsequent pipeline stages.

The vertex processors (sometimes called “vertex shaders”), shown in Figure 30-4, allow
for a program to be applied to each vertex in the object, performing transformations,
skinning, and any other per-vertex operation the user specifies. For the first time, a

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-3. A Block Diagram of the GeForce 6 Series Architecture

430_gems2_ch30_new.qxp 1/31/2005 6:56 PM Page 474

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation

[G
P
U

 G
em

s
2
]

NVIDIA GeForce 6 Architecture (2005)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 27

NVIDIA GeForce 8800 Architecture Technical Brief

!

!

!

Figure 1. GeForce 8800 GTX block diagram

"#$%&!'#(()*'+%,,!-+./(01+!2,,!&3+!4#()!-+&20,.!#5!6047(+!8!9+()!.3#(&,):!;#<=2(+-!
&#!&3+!>+6#(/+!?@AA!>BCD!2!.0$4,+!>+6#(/+!EEAA!>BC!>FG!-+,09+(.!HI!&3+!
=+(5#(<2$/+!#$!/7((+$&!2==,0/2&0#$.D!'0&3!7=!&#!88I!./2,0$4!<+2.7(+-!0$!/+(&20$!
.32-+(!#=+(2&0#$.J!K.!57&7(+!42<+.!1+/#<+!<#(+!.32-+(!0$&+$.09+D!'+!+L=+/&!&3+!
>+6#(/+!EEAA!>BC!&#!.7(=2..!"0(+/&C!@M/#<=2&01,+!>FG!2(/30&+/&7(+.!0$!
=+(5#(<2$/+J!!

N$!4+$+(2,D!.32-+(O0$&+$.09+!2$-!3043!-)$2<0/O(2$4+!PQ"RSM0$&+$.09+!2==,0/2&0#$.!
.30$+!#$!>+6#(/+!EEAA!2(/30&+/&7(+!>FG.J!B+(25,#=.!#5!(2'!5,#2&0$4O=#0$&!
=(#/+..0$4!=#'+(!2(+!/#<10$+-!&#!-+,09+(!7$<2&/3+-!42<0$4!=+(5#(<2$/+D!4(2=30/.!
(+2,0.<D!2$-!(+2,O&0<+D!50,<OT72,0&)!+55+/&.J!

B3+!4(#7$-1(+2U0$4!VWN"NKX!>042B3(+2-Y!&+/3$#,#4)!0<=,+<+$&+-!0$!>+6#(/+!
E!Z+(0+.!>FG.!.7==#(&.!&3#7.2$-.!#5!0$-+=+$-+$&D!.0<7,&2$+#7.,)!+L+/7&0$4!
&3(+2-.D!<2L0<0[0$4!>FG!7&0,0[2&0#$J!

2 TB-02787-001_v01
 November 8, 2006

[N
V

ID
IA

 C
o
rp

o
ra

ti
o
n
]

NVIDIA GeForce 8800 Architecture (2007)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 28

ATI Radeon HD 2900 Architecture (2007)

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 30

T
h
e

D
ig

it
al

 M
ic

h
el

an
ge

lo
 P

ro
je

ct
—

St
an

fo
rd

 U
n
iv

er
si

ty

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 31

T
h
e

D
ig

it
al

 M
ic

h
el

an
ge

lo
 P

ro
je

ct
—

St
an

fo
rd

 U
n
iv

er
si

ty

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 1 32

T
h
e

D
ig

it
al

 M
ic

h
el

an
ge

lo
 P

ro
je

ct
—

St
an

fo
rd

 U
n
iv

er
si

ty

