Introduction

Lecture 1
\qquad

Cornell CS569 Spring 2008- Lecture 1

Cornell CS569 Spring 2008•Lecture 1

How To Draw a Triangle, c. 1985

- Transform vertices to screen coordinates
- Find all the pixels covered by the triangle
- Fill all the pixels with the triangle's color

How To Draw a Triangle, c. 1988

- Perform lighting calculations to find vertex colors
- Transform vertices to screen coordinates
- Find all the pixels covered by the triangle
- Fill all unoccluded pixels with the interpolated vertex colors and depth

How To Draw a Triangle, c. 1999

- Perform elaborate lighting calculations to find vertex colors
- Transform vertices to screen coordinates
- Find all the pixels covered by the triangle
- Look up a value from one or more 1D, 2D, or 3D texture maps
- Fill all unoccluded pixels with a complicated, adjustable function of the textures and the interpolated vertex colors, as well as the depth

How To Draw a Triangle in 2008

- Execute a vertex program over all the vertices
- Find all the pixels covered by the triangle
- Execute a fragment program over all those pixels
- Fill all unoccluded pixels with the resulting color and depth

Development of Hardware Capabilities

- Workstation era
'85-'87: transform and render flat-shaded points, lines, polygons (no z buffer)
'88-'91: transform, light, and render smooth shaded polygons
'92-: transform, light, and render texture-mapped, antialiased polygons
- PC era
'95-'98: render texture-mapped polygons
'99-'00: transform, light, and render texture-mapped, antialiased polygons
'01-'06: execute vertex and fragment shaders over antialiased polygons
'07-: execute geometry, vertex, and fragment shaders over antialiased polygons

2007 ITRS Product Technology Trends .

SGI RealityEngine Architecture (1992)

Figure 1. Board-level block diagram of an intermediate configuration with 8 Geometry Engines on the geometry board, 2 raster memory boards, and a display generator board.

SGI InfiniteReality Architecture (1996)

Cornell CS569 Spring 2008• Lecture 1

NVIDIA GeForce 8800 Architecture (2007)

NVIDIA GeForce 6 Architecture (2005)

Cornell CS569 Spring 2008•Lecture 1

ATI Radeon HD 2900 Architecture (2007)

