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We’ve discussed simulation as a way to get motion, but if you can’t simulate the motion you want 
you’ll need to be able to work with data that comes in as keyframed animation or motion capture 
data.

The tools for computer animation (for offline applications) have developed a variety of great 
ways to specify subtle and realistic motion, by using variants of a general rigging approach in 
which animator controls define the parameters of deformers that are then applied to a model to 
obtain the output model.  I’ll assume the output model is ultimately just a triangle mesh, although 
in practice the structure of the model (and its deformations) may be maintained into the renderer.

For offline rendering, the output meshes can just go, one per frame, to the rendering system.  But 
for realtime applications, this creates a bandwidth problem: a fresh set of vertex positions per 
frame is a lot of data, both to store and to transmit to the GPU:

You could certainly do this, for a moderately sized mesh, but it does consume a lot of resources.



Frame interpolation and blend shapes

One might want to reduce bandwidth by somehow compressing the vertex position data stream.   
For instance, we could send just a subset of the frames, say every tenth frame, and linearly inter-
polate between them to approximate the frames in between.  How could we implement this in the 
shader pipline?

A: previous and next vertex positions in attributes; time in uniform; interpolation in vertex shader.

Does this help?  No!  In fact, it’s just doubled the bandwidth problem.  (Although it does improve 
the storage requirements in application memory.)

In order to reap the benefits of expressing our deformations in terms of a smaller set of frames, 
we need to avoid redundantly transmitting the vertex positions.  The way to do this is by using a 
vertex buffer, an OpenGL object that lives in GPU memory (like a texture or a render buffer) and 
stores vertex data.  A buffer object can serve as the source of attributes for later drawing calls.  
Nothing changes from the shader’s point of view, but the system diagram now looks like this:

The quality of the resulting motion can be considerably improved if we choose the frames care-
fully, rather than just by regular sampling.  Just like with keyframe animation, the best results will 
be had by interpolating between poses that are extremes of the motion, or key frames.  These key 
frames could be selected based on the key frames that the animator used, or selected automati-
cally.  Also, there’s no reason the blending weight has to be tied directly to the time; it could 
change at a variable rate to better match the original motion.  None of this would change anything 
in the implementation; we just send the vertex data at different times and send different numbers 
for the interpolation weight.

To get smoother results we could use three or four frames in a higher-order interpolation.  If the 
interpolation involves n frames, we’d need n sets of vertex data in graphics memory, which we’d 
pass into the vertex shader as n different attributes, and we’d send n (or n – 1) blending weights 
per frame.  With this fancier interpolation we could hope to send fewer frames of data, at the cost 
of more complex vertex processing.

If we step back for a moment and look at what we’re doing from a mathematical standpoint, we 
can see that we have a vertex program that basically computes a linear combination of vectors 
(thinking of all the vertex positions strung out as a long vector).  What we are doing is sending a 
basis—a set of vectors that span a useful range of deformations—to the GPU, and then for each 
frame sending weights for a linear combination of those vectors—or, the coordinates of our de-
formed vertex positions in that basis.  For an arbitrary animation where things change a lot, we 



need to keep updating this basis set, but for cases with a more limited range of motions we can 
come up with one basis that serves for the entire animation. 

This is a limiting case of the frame blending idea, where we send all the basis shapes up front, 
then only send blending weights thereafter.  This approach is known as morph targets or blend 
shapes, and is quite popular for facial animation.  For example, see NVIDIA’s various human 
character demos.

In the data flow diagram it now looks like this:

With a time-independent set of blend shapes, the blending shapes are also useful animation pa-
rameters, if we choose meaningful blend shapes.  For faces the shapes are often classified as ex-
pressions (e.g. smile) that affect the whole shape or modifiers (e.g. eye closing) that are more lo-
cal:

In the simple form where we store the actual vertex positions as the basis vectors, we have to en-
sure that the weights sum to 1.  Another way to do it, which automatically ensures this, is to store 
each pose as an offset from the neutral pose:

Blend shapes can be quickly summarized with an equation:

The second equation reflects the practice of using offsets from a canonical “neutral” pose, which 
results in better numerical behavior (the basis is better conditioned and you’re less likely to see 
cancellation in low-precision storage formats).



Calculating space deformations on the GPU

Blend shapes are one approach to animating meshes, by taking linear combinations of basis 
meshes.  The other major approach is to deform a mesh by using a remapping of the space in 
which the mesh lives.  Here the idea is that we have a function φ that maps R3 onto itself, and we 
define the deformation of a surface by mapping all the points of the surface through that function.

For the case of a mesh, we’ll just transform the vertices through φ—and there had better be 
enough vertices or there will be artifacts.

Examples of sources for the function φ are free-form deformations, which define a deformation 
of space directly by using a 3D spline, parametric deformations like twisting, and arbitrary func-
tions we cook up for special purposes, like the circular wave deformer everyone seems to like to 
use as an example (see slides).

As long as φ is simple enough to evaluate, it’s trivial to implement the deformation of vertex po-
sitions.  It starts to get more interesting when you need to compute the transformed normal.  
(Where have we seen this problem before?)

We all know how to compute transformed normals for the simplest deformation, which is an af-
fine transformation.  We use the inverse transpose matrix.  (Recall why.)

If the deformation is nonlinear, though, we can’t just have a matrix for the transformation.  But 
we can have a matrix that approximates the transformation locally—it’s called the derivative ma-
trix.  We can map tangents through the derivative matrix, and normals through its inverse trans-
pose.

Implications of normal transformation in vertex shader.  Do you really want to invert a matrix?

That’s pretty much all there is to it.  It’s important to have enough triangles, so that when the de-
formation stretches them out they don’t get too big.

Linear blend mesh skinning

One of the most popular ways of deforming meshes is called skinning.  The idea is that you have 
a mesh that’s supposed to deform pretty much rigidly over local areas, but not by the same trans-
formation everywhere.  The canonical example is a human figure.

An early approach was just to assign each vertex to one bone, and transform that vertex by its 
bone’s transformation.  This could be OK for very low-res meshes, but it will produce bad arti-
facts if you start with nice smooth meshes, because the sharp boundaries between surface regions 
affected by different transformations will become painfully obvious.

The idea behind skinning is to smooth out those discontinuities by blending between the trans-
formations over some range rather than just switching from one to the next.  Rather than assign-
ing each vertex to one bone, you give each vertex a weight for every bone (many of which will be 
zero—the left pinky doesn’t need to affect the right forearm).  Then each vertex of the mesh is 
transformed by a linear combination of bone matrices:



Another way of seeing this is that we are blending the positions the vertex would receive under 
each individual bone transformation:

To do linear skinning  you need bone weights per vertex.  They are the responsibility of the mod-
eler—they could be automatic, or they could be painted manually.  They do need to add to 1 in 
order to avoid changing the overall position of the mesh.

To match the form you often see this equation written in, we can think of each bone transforma-
tion as the difference between that bone’s bind pose transform—its location in the model’s neutral 
pose, where the original vertex positions are created—and its current transform.  This amounts to 
taking the current frame transformation and multiplying by the “bind pose inverse” matrix:

where T is the current transform and B is the neutral (bind pose) transform.

Now, what about the normals to this surface?  We already know how to transform the normals 
through each of the (affine) bone transformations:

so all we need to do is blend the transformed normals, right?  Like this:

Well, yes, this is how everyone does it.  But is it right?  Does skinning fit into the general defor-
mation framework from the previous section, so that we can we use the same Jacobian rule we 
used for general deformations?

Further reading


