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The whole point of interactive graphics is that things can move.  So far all our motion has come 
from moving the camera around, or applying simple transformations to objects in the scene.  This 
is great for modeling applications, but for something like a game we want much more complex 
motion.

Types of animation in interactive systems

Broadly speaking, there are three sources of motion for graphics:

1. Keyframe animation

2. Motion capture

3. Physical simulation

The first two types are pre-recorded animation: an animator painstakingly adjusts control curves, 
or an actor does take after take, until the motion is perfect, and then it is stored away to be played 
back at the appropriate time.  These kinds of animation are not inherently interactive: the motion 
is just there, independent of what the user does.  In interactive applications they respond to user 
control by being triggered at the appropriate moment.  For instance, the player hits the “kick” but-
ton and her character executes a pre-scripted kick, which knocks out the bad guy, who then exe-
cutes a pre-scripted fall onto the floor.  In a football game, after a player makes a touchdown the 
character might spike the ball and do a victory dance that was recorded from the real player using 
motion capture.

In games there are lots of motions that are designed to fit together in sequences like this.  The 
simplest arrangement is a state machine: a character moves from pose to pose via scripted mo-
tions, and it can only execute motions that start from the current pose.  If you get more sophisti-
cated about it, you can blend motions together to construct smooth transitions in less constrained 
circumstances, producing a wider, but still limited, range of motions.  We’ll talk more about the 
techniques for playing back these motions in the next lecture.

In physical simulation, the motion of an object is computed by simulating the physics that govern 
its motion.  The object starts in some initial state, is subject to forces over time that alter its mo-
tion, and the motion can just be computed.  For appropriately simple physical models, this simu-
lation can be done in real time—that is, it takes less than a frame of wall-clock time to compute 
one frame of motion.  In this case, a simulated motion is inherently interactive: the object or sys-
tem can be subject to all manner of forces and other inputs that are caused by the user, and the 
simulation automatically behaves appropriately.



In games and movies, simulation is used for secondary motion: billowing smoke, swirling fog, 
wrinkling clothes, splashing water, blowing hair, etc.  It is also used for events that are primarily 
caused by passive motion: explosions, collapses, characters falling through the air, etc.  In games 
a simulation can become part of the game play: the dynamics of a car the player is driving, the 
motion of passive obstacles, etc.  There are some very early examples of games whose gameplay 
is governed by a simulation: asteroids is a simple particle system; lunar lander is a one-particle 
system with gravity.  These games are challenging and fun partly because you have to understand 
the physics of your vehicle in order to play successfully.

The autonomy of simulations is both a blessing and a curse: the good thing is that the simulation 
determines the motion without any requirement for human supervision; the bad thing is that the 
simulation determines the motion without any opportunity for human supervision.  The simula-
tion does what it does, and in a game this can be awkward because it’s hard to guarantee anything 
about what is going to happen.  This is fine if the simulation is just for decoration, but if it affects 
the game’s world (e.g. simulations of vehicle behavior or of breaking walls) then it can become 
harder for the game designer to control the course of the action—which is itself a blessing and a 
curse!

Types of simulations

Simulations can be categorized by what kind of physical model controls the motion:

• Rigid bodies, governed by momentum and angular momentum

• Cloth, governed by the dynamics of an elastic sheet

• Fluids, governed by pressure and velocity via the Navier-Stokes equations

• Elastic solids, governed by the dynamics of an elastic volume

• Particle systems, governed by very simple Newtonian mechanics

All these types of simulations are used frequently in offline applications (such as film produc-
tion), but only the simpler ones can be simulated in real time (though of course that dividing line 
is constantly in motion as hardware performance and computational techniques improve).  The 
simplest of all these is the particle system, which is therefore by far the most often used simula-
tion technique in the interactive setting.  (Rigid body simulation is also popular, because it can 
also be implemented very efficiently, but it is quite a bit more complex.)

One great thing about particles is that they can be used fairly effectively to approximate all the 
types of physics listed above.

Particle systems

Witkin and Baraff have done a great job of putting together slides and notes on particle systems 
for graphics, so rather than attempting to improve on that I will ask you to read their notes in-
stead.  They are available at the URL below and are linked from the course web site.



Simulating other things with particles

Particle systems can be set up to approximate all manner of physical systems.  Particles are not 
always the fastest or most accurate approach, but they are intuitive and simple to get working, so 
they are very widely used.

Flexible bodies

Cloth, rope, hair, flesh, and other 1- to 3-D flexible objects can be approximated by collections of 
particles that are connected up into a fairly stiff mesh with springs.  Cloth is a good example—it 
can be set up using stiff springs to resist extension and weaker springs to resist bending and 
shearing.

A slightly more sophisticated approach, described in Baraff and Witkin’s influential paper, “Large 
Steps in Cloth Simulation,” is to define the forces, not with springs, but with somewhat more 
general n-ary forces based on energy functions that penalize distortions in the cloth.

One problem with flexible bodies is that they tend to lead to stiff differential equations that are 
very difficult to solve stably using explicit methods like the ones we’ve discussed.  They can be 
more successfully simulated using implicit methods, which can take much larger time steps at the 
expense of higher per-step computation and considerably increased algorithmic complexity.

Fluids

Liquids can be simulated using an approach known as smooth particle hydrodynamics or SPH.  
The main difference between this kind of approach and a spring mesh for flexible bodies is that 
the connections are not fixed.  In SPH, the forces on a particle are calculated by searching for 
nearby particles and using their positions and velocities.  For instance, there is a “pressure” force 
that pushes particles towards regions of lower particle density and a “viscosity” force that damps 
out differences in velocity between nearby particles.  The key to getting it to work is nice smooth 
estimates of the properties of the fluid based on the particles’ state.

Further reading

Witkin and Baraff’s SIGGRAPH 01 course notes are a great source for learning this material, par-
ticularly if you are coming to the topic with a CS/graphics background but less knowledge of 
physics and numerical analysis.

Andrew Witkin and David Baraff, Physically Based Modeling. Notes for SIGGRAPH 2001 
Course 25.  URL: http://www.pixar.com/companyinfo/research/pbm2001/index.html

David Baraff and Andrew Witkin, “Large Steps in Cloth Simulation.” SIGGRAPH 1998.

Matthias Müller, David Charypar and Markus Gross, “Particle-based Fluid Simulation for Inter-
active Applications.” Eurographics Symposium on Computer Animation 2003.


