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To have visually appealing images, we like to have a lot of detail in the models we render.  But 
detail is expensive—both in terms of the effort it takes to create it or measure it, and in terms of 
the cost of transmitting a large triangle mesh to the GPU and processing all the vertices. For this 
reason, people have developed a lot of schemes over the years for using less geometry in ex-
change for some information carried around in textures.

The basic idea of most of these schemes boils down to storing coarse geometry as a triangle 
mesh, and separating out the details, one way or another, in a texture map.  I’m going to tell the 
story a bit out of order, to put the conceptually simplest idea ahead of the historically earliest one.

Displacement mapping

The basic idea behind many ways of adding surface detail is that of displacing the surface along 
its normal by a distance stored in a texture.  The straightforward application of this idea is called 
displacement mapping:

surface. Attempts to do this were not very
sucessful. The images usually looked like smooth
surfaces with photographs of wrinkles glued on.
The main reason for this is that the light source
direction when making the texture photograph was
rarely the same as that used when synthesizing the
image. In fact, if the surface (and thus the
mapped texture pattern) is curved, the angle of
the light source vector with the surface is not
even the same at different locations on the patch.

2. NORMAL VECTOR PERTURBATION

To best generate images of macroscopic
surface wrinkles and irregularities we must
actually model them as such. Modelling each
surface wrinkle as a separate patch would probably
be prohibitively expensive. We are saved from
this fate by the realization that the effect of
wrinkles on the perceived intensity is primarily
due to their effect on the direction of the
surface normal (and thus the light reflected)
rather than their effect on the position of the
surface. We can expect, therefore, to get a good
effect from having a texturing function which
performs a small perturbation on the direction of
the surface normal before using it in the
intensity formula. This is similar to the
technique used by Batson et al. [1] to synthesize
aerial picutres of mountain ranges from
topographic data.

The normal vector perturbation is defined in
terms of a function which gives the displacement
of the irregular surface from the ideal smooth
one. We will call this function F(u,v). On the
wrinkled patch the position of a point is
displaced in the direction of the surface normal
by an amount equal to the value of F(u,v). The
new position vector can then be written as:

P' = P + F N/INI

This is shown in cross section in figure 2.

The partial derivatives involved are evaluated by
the chain rule. So

Pu' = d/du P' = d/du(P + F N/INI)
= Pu + Fu N/INI + F (N/INI)u

Pv' = d/dv P' = d/dv(P + F N/INI)
= Pv + Fv N/INI + F (N/INI)v

The formulation of the normal to the wrinkled
surface is now in terms of the original surface
definition functions, their derivatives, and the
bump function, F, and its derivatives. It is,
however, rather complicated. We can simplify
matters considerably by invoking the approximation
that the value of F is negligably small. This is
reasonable for the types of surface irregularities
for which this process is intended where the
height of the wrinkles in a surface is small
compared to the extent of the surface. With this
simplification we have

Pu' Pu + Fu N/INI

Pv' Pv + Fv N/INI

The new normal is then

N' = (Pu + Fu N/NI) x (Pv + Fv N/NI)

= (Pu x Pv) + Fu (N x Pv)/INI

+ Fv (Pu x N)/INI + Fu Fv (NxN)/lNI

The first term of this is, by definition, N. The
last term is identically zero. The net expression
for the perturbed normal vector is then

N' =N +

where D = ( Fu (N x Pv) - Fv (N x Pu) ) / INI

This can be interpreted geometrically by observing
that (N x Pv) and (N x Pu) are two vectors in the
tangent plane to the surface. An amount of each
of them proportional to the u and v derivatives of
F are added to the original, unperturbed normal
vector. See figure 3

Another geometric interpretation is that the
vector N' comes from rotating the original vector
N about some axis in the tangent plane to the
surface. This axis vector can be found as the
cross product of N and N'.
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[Blinn 78]

The simplest way to render the displaced surface is to go ahead and displace the vertices of a 
densely tessellated smooth surface.  This can be done using a texture lookup in a vertex shader.  
Let’s think about the details for a minute:

Attributes: position, normal, texture coordinates

Varying: normal, texture coordinates

It’s very clear what needs to be done with the position: you do a texture lookup to get a displace-
ment, and you set the position to position + normal * displacement.  (There are some more details 
to think about, such as whether you’d like to allow displacements to be signed, and what the 
meaning of a displacement of 1.0 is if you scale the geometry up and down.)



But what needs to be done with the normal?  The displaced vertex needs to get a new normal, or 
it will be shaded much the same as the original vertex would have been.  The normal depends on 
what displacements are being applied to neighboring parts of the surface; think of this 2D exam-
ple in which the same height appears in two places with very different normals, even though the 
base surface is flat:

The direction of the normal depends on the slope (the derivative) of the displacement function, 
and on the underlying normal:

In 2D, it’s relatively simple to work out the formula for the normal to the displaced surface [here 
labeled q(s)] in terms of the displacement function and an arc length parameterization of the base 
surface, p(s):

The conclusion of this derivation is that, if we are willing to assume that the displacement is 
much smaller than the radius of curvature of the surface (that is, the product dκ of displacement 
and curvature is small relative to 1), then the normal to the displaced surface is just the base nor-
mal altered by adding a correction in the direction of the base tangent with the magnitude of the 
derivative of the displacement.  When the displacement is constant, the normal is the same as the 



base normal; when the displacement is changing fast it pushes the normal towards the downhill 
side.

In 3D a similar result still holds, but it’s a lot more complicated to derive.  Blinn [1978] derived 
this result, and Lee et al. [2000] give a more mathematical view.  The end result, after we discard 
that second-order term, is:

(Note that m-tilde needs to be normalized still.) This result says much the same thing as the 2D 
result; it’s easiest to read if we think of the s and t derivatives of p as being about perpendicular to 
one another (the last line of the preceding derivation).  Then it says that displacing the surface 
makes its normal tilt toward the downhill direction.  This isn’t a big surprise if you think about it 
for a minute.  When the texture coordinates are rather distorted, so that the derivatives of p are far 
from perpendicular, you have to recognize that an s derivative causes the normal to tilt in the 
plane perpendicular to the t derivative, not in the plane of the s derivative.  Weird.

In any case, this is all simple enough to write down in a vertex shader, save two things.  First, we 
need to compute the two texture coordinate derivatives and get them to the vertex shader via addi-
tional attributes.  Second, we don’t have the derivatives of the displacement map stored any-
where; just the map itself.  The canonical way to compute these derivatives is using central differ-
ences: for example, ps = (p(s + δ, t) – p(s – δ, t)) / (2δ), where δ is the size of a texel in texture 
coordinate space.

The implication of all this is that to do displacement mapping you need to have the two tangent 
vectors—the derivatives of surface position with respect to the s and t texture coordinates—avail-
able.  For rigid objects, one can compute these ahead of time and store them (as you did in the 
first assignment).  Note that these are not exactly the same as the tangent and binormal you’d  use 
for something like anisotropic shading, because they are not always orthogonal to one another.

So we end up with a vertex shader like this:

1. Attributes: position, normal, s tangent, t tangent, texture coordinates.

2. Vertex shader: look up height; displace position; look up height derivatives (4 more non-
dependent texture reads); compute displaced normal. 

3. Varying: normal, texture coordinates.

4. Fragment shader: compute shading using any standard model



Now that I’ve derived all this, I’ll tell you that displacement mapping is still used more often in 
offline rendering than in real time, because you still have to feed in a highly tessellated base sur-
face.  Things are starting to change so that you can dice up coarse geometry on the GPU, then 
process the triangles without ever having them see the CPU, and in that case displacement map-
ping is a big win in terms of CPU-GPU bandwidth.

But in the grand scheme of things, displacement mapping is more often used as a modeling tool: a 
way to conveniently add detail to a model using a paint program to control the surface relief (see 
toy locomotive example due to Paweł Filip).

Lee, Moreton, & Hoppe [2000] demonstrate how effective displacement is with a nice, smooth 
subdivision surface as the base surface.

One use of displacement mapping (as long as the base surface is well-behaved) is as a way to 
animate a complex surface: make it a displacement from a smooth surface, and animate the 
smooth surface.  We’ll talk more about animating detailed meshes later on in the course.

Bump mapping

If you look at a displacement mapped surface that’s facing mainly toward the camera, the dis-
placements hardly change the surface position in the image—most of the visible effects are 
through the surface normal.  The idea of bump mapping, which predates displacement mapping 
because it is much cheaper, is to ditch the displacement itself but keep the effect of the displace-
ment on the surface normal.

The earliest work on simulating surface details was by Jim Blinn in 1978.  At the time, using 
enough triangles to get a texture of small-scale bumps—for instance, to render the peel of an or-
ange, the iconic image from this paper—was out of the question.  Generating a one-channel tex-
ture that stored the bumps as a displacement field was feasible, though, and he observed that what 
really matters for details in shading is the fast-changing normals, not the changes in the actual 
surface position itself.  So the idea was to think in terms of a displaced surface to compute nor-
mals that would then be used to shade the flat polygons without actually constructing the dis-
placed surface.

Now that we already derived displacement mapping, the bump mapping is easy: Forego the 
change in the surface position, but keep the change to the surface normal, and move the computa-
tion to the fragment shader.

1. Attributes: position, normal, s tangent, t tangent, texture coordinates.

2. Vertex shader: pass everything straight through.

3. Varying: normal, s tangent, t tangent, texture coordinates.

4. Fragment shader: look up height derivatives (4 more non-dependent texture reads); com-
pute displaced normal; compute shading using any standard model.



Normal mapping

Bump mapping has been a staple in the toolbox for quite some time, but a method that trades 
heavier use of texture memory for a decrease in complexity has become quite popular as texture 
memory has grown.  The idea is to just go ahead and store the normal—all three components— in 
the texture map, to save the trouble of computing the derivatives of the bump map at render time.  
The normal map could be derived from a displacement map or bump map using the equations 
above (this is probably easiest if you wanted to paint the map); or it could be computed on its 
own (more on this later).

There is a choice of what space to represent the normals in.  The simplest thing is to store them in 
object space—that is, store all of them with reference to the same 3D coordinate system you’re 
using to store the vertex positions.  Then you only need to transform the normal into world space, 
which is a fixed (uniform) transformation.  But this is not a good choice for deformable surfaces 
because you’d need a way to deform the normals with the surface—they don’t all want to trans-
form by the same matrix.

A second option is to store the normals in a local frame on the surface (in tangent space).  This 
comes with the cost of transforming the normals into world space for lighting calculations (this is 
more trouble than transforming the from world to object space because it involves a transforma-
tion that changes per fragment), but has a number of advantages that make it usually the preferred 
approach.  You can use a tangent-space normal map on any geometry, or move it around on the 
surface, without worrying about recomputing the normals.  The underlying surface can also de-
form, and the normals will be carried with it.

So for tangent-space normal mapping, the operations are:

1. Attributes: position, normal, tangent, binormal, texture coordinates.

2. Vertex shader: pass everything straight through.

3. Varying: normal, tangent, binormal, texture coordinates.

4. Fragment shader: look up tangent-space shading normal; construct tangent-space matrix; 
transform normal to world space; perform shading.

Note that you could compute the binormal at either the vertex or the fragment stage if you need to 
conserve CPU–GPU bandwidth or vertex attributes.  If you can get away with object space nor-
mals (your geometry is rigid and rigidly transformed, and your texture coordinates are one-to-
one) then you can use a much simpler implementation that passes nothing but texture coordinates 
into the vertex shader and transforms the looked-up normal by a uniform matrix to get it into 
world space.

In the fixed-function pipeline, normal mapping was done using a special texture mode that would 
compute the dot product between the looked-up normal and an interpolated vector.  If the second 
vector is the light direction, you get diffuse shading, and if it’s the half vector, you can compute 
specular shading.  This mode is called “DOT3” so you will sometimes hear normal mapping 
called “DOT3 bump mapping.”



Deriving maps from geometry

Very often, displacement, bump, and normal maps are used as modeling primitives: they are 
painted, derived from the color texture, pasted in from a library, or grabbed from any other con-
venient source and used to add detail that is not present in the geometric model.

Sometimes, though, you do actually have a detailed model that you’d like to display, but you only 
have the polygon budget to display a simplified mesh.  In this case you already have the detail 
information; you just want to turn it into the appropriate type of texture map so that you can fake 
the more complex geometry cheaply.

There are various approaches for this, but the basic steps are:

Establish a correspondence between the base surface and the detail surface.

For each texel, store information about the corresponding point on the detail surface.

For deriving a displacement map, the obvious thing to do is to find a point on the detail surface 
that you can reach by displacing from the base surface along the base surface normal.  This is ba-
sically a ray tracing operation:

The normal you use in this computation should be the normal you’ll use for displace-
ment—which, for a coarse triangle mesh, could be quite different than the geometric normal:

Note the large jump in displacement values on the right—this will be bad news if you use the re-
sulting map for displacement mapping (with interpolated normals) or bump mapping (at all).  The 
normal vectors will also jump suddenly, if you store them for a normal map.  On the left every-
thing is nice and continuous.



Note that this intersection might fail, in cases where the base surface is not such a great approxi-
mation:

You have to be ready for this case somehow; leaving a “void” value in the map and interpolating 
across the hole afterwards might be a reasonable approach.  Something more subtle that can also 
happen is the surface folding back on itself:

This is harder to detect, but will cause bad artifacts in a displaced surface.  For a bump or normal 
map it might not be so obvious this is happening.

If there is some other correspondence between the two surfaces available, that correspondence 
can be used for normal mapping.  The usual source of such correspondence information is some 
kind of mesh simplification (more on these methods later in the course).  Many mesh simplifica-
tion methods are therefore set up to take in a detailed mesh and spit out a simplified mesh with a 
normal map designed to make it look like the detailed mesh.  This can be quite effective.

Height fields

A common use of displacement is for terrain, where the base surface can be a plane and the dis-
placement is an elevation map.  These elevation maps are a standard kind of geographic data (if 
you’re interested in real-world environments, as in a flight simulator) or can be synthesized by 
simple fractal approaches that produce quite convincing hills and mountains.  It’s also fairly easy 
to synthesize very convincing height fields for water surfaces ranging from swimming pools to 
high seas, and with the appropriate shader and environment map they look great.



Geometry images

If you take a displacement map and, instead of storing a displacement relative to the base surface, 
just store the position you want in 3D, the geometry of the base surface no longer matters; all the 
geometric information is in the texture.  This is a geometry image.


