CS5670: Computer Vision
Single-View Modeling
Announcements

• Project 3: Autostitch (Panorama Stitching)
 – Due on Friday, March 15, by 8pm
 – To be done in groups of 2
 – If you need help finding a team member, let us know
Single-View Modeling

- Reading: Szeliski Chapter 11.1
Ames Room
Forced perspective in film

How Lord of the Rings used forced perspective shots with a moving camera

https://www.youtube.com/watch?v=QWMFpxkGO_s
Forced perspective illusions

https://richardwiseman.wordpress.com/magic-illusion/
Projective geometry—what’s it good for?

• Uses of projective geometry
 – Drawing
 – Measurements
 – Mathematics for projection
 – Undistorting images
 – Camera pose estimation
 – **Object recognition**
Applications of projective geometry

Vermeer’s Music Lesson

Reconstructions by Criminisi et al.
Making measurements in images

Measure your pupillary distance (PD)

Your PD is the distance between your pupils. To measure it, follow the instructions below — once you submit your photo, our team of experts will determine your PD and email you once we’ve applied it to your order.

1. Wearing glasses? Take ’em off before you get started.
2. Hold up any card with a magnetic strip (we use this for scale).
3. Look straight ahead and snap a photo.
Measurements on planes

Approach: unwarp then measure
Point and line duality

- A line \(l \) is a homogeneous 3-vector
- It is \(\perp \) to every point (ray) \(p \) on the line: \(l \cdot p = 0 \)

What is the line \(l \) spanned by points \(p_1 \) and \(p_2 \)?
- \(l \) is \(\perp \) to \(p_1 \) and \(p_2 \) \(\Rightarrow \) \(l = p_1 \times p_2 \)
- \(l \) can be interpreted as a plane normal

What is the intersection of two lines \(l_1 \) and \(l_2 \)?
- \(p \) is \(\perp \) to \(l_1 \) and \(l_2 \) \(\Rightarrow \) \(p = l_1 \times l_2 \)

Points and lines are dual in projective space
Example

What is the line passing through points p and q?

$p \times q$
Example

How do we interpret the line \(\ell = \begin{bmatrix} 0 \\ 1 \\ -200 \end{bmatrix} \)?

Answer: the set of points \((x, y)\) such that \(\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \cdot \ell = 0\), i.e., \(y - 200 = 0\)
Example

What is the line passing through points p and r?

$$p \times r = \begin{bmatrix} 100 \\ 200 \\ 1 \end{bmatrix} \times \begin{bmatrix} 150 \\ 150 \\ 1 \end{bmatrix} = \begin{bmatrix} 200 \cdot 1 - 150 \cdot 1 \\ 150 \cdot 1 - 100 \cdot 1 \\ 100 \cdot 150 - 150 \cdot 200 \end{bmatrix} = \begin{bmatrix} 50 \\ 50 \\ -15000 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 1 \\ -300 \end{bmatrix}$$

i.e., all points (x, y) such that $x + y = 300$
Consider the above image, with four points p, q, r, s, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through p and r and the line through q and s?
Consider the following image, with four points p, q, r, s, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through p and r and the line through q and s?
Consider the above image, with four points p, q, r, s, labeled (assume these are 2D homogeneous points).

What is a simple expression for the point of intersection between the line through p and r and the line through q and s?

Answer: $(p \times r) \times (q \times s)$
Ideal points and lines

- **Ideal point (“point at infinity”)**
 - \(p \approx (x, y, 0) \) – parallel to image plane
 - It has infinite image coordinates

- **Ideal line**
 - \(l \approx (a, b, 0) \) – parallel to image plane
 - Corresponds to a line in the image (finite coordinates)
 - goes through image origin (*principal point*)
3D projective geometry

- These concepts generalize naturally to 3D
 - Homogeneous coordinates
 - Projective 3D points have four coords: \(\mathbf{P} = (X,Y,Z,W) \)
 - Duality
 - A plane \(\mathbf{N} \) is also represented by a 4-vector
 - Points and planes are dual in 3D: \(\mathbf{N} \cdot \mathbf{P} = 0 \)
 - Three points define a plane, three planes define a point
3D to 2D: perspective projection

Projection: \[p = \begin{bmatrix} w_x \\ w_y \\ w \end{bmatrix} = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & * \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \Pi_P \]
Figure 23.4
A perspective view of a set of parallel lines in the plane. All of the lines converge to a single vanishing point.
Vanishing points (1D)

- Vanishing point
 - projection of a point at infinity
 - can often (but not always) project to a finite point in the image
Vanishing points (2D)
Vanishing points

- Properties
 - Any two parallel lines (in 3D) have the same vanishing point \mathbf{v}
 - The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point
Computing vanishing points

- Properties
 - \(P_\infty \) is a point at infinity, \(v \) is its projection
 - Depends only on line direction
 - Parallel lines \(P_0 + tD, P_1 + tD \) intersect at \(P_\infty \)

\[
P_t = \begin{bmatrix} P_X + tD_X \\ P_Y + tD_Y \\ P_Z + tD_Z \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} P_X / t + D_X \\ P_Y / t + D_Y \\ P_Z / t + D_Z \\ 1/t \end{bmatrix}
\]

\[
v = \Pi P_\infty
\]
One-point perspective
Two-point perspective
Three-point perspective

3 VANISHING POINTS - LOOKING UP
Questions?
Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called *vanishing line*
 - Note that different planes (can) define different vanishing points
Vanishing lines

• Multiple Vanishing Points
 – Any set of parallel lines on the plane define a vanishing point
 – The union of all of these vanishing points is the *horizon line*
 • also called *vanishing line*
 – Note that different planes (can) define different vanishing
Computing vanishing lines

• Properties
 – \(l \) is intersection of horizontal plane through \(C \) with image plane
 – Compute \(l \) from two sets of parallel lines on ground plane
 – All points at same height as \(C \) project to \(l \)
 • points higher than \(C \) project above \(l \)
 – Provides way of comparing height of objects in the scene
Lots of fun with vanishing points
Perspective cues
Perspective cues
Perspective cues
Comparing heights
Measuring height

How high is the camera?
Computing vanishing points (from lines)

Intersect p_1q_1 with p_2q_2

$v = (p_1 \times q_1) \times (p_2 \times q_2)$

Least squares version

- Better to use more than two lines and compute the “closest” point of intersection
- See notes by Bob Collins for one good way of doing this:
Measuring height without a ruler
Measuring height without a ruler

Compute Z from image measurements
 • Need more than vanishing points to do this
The cross ratio

• A Projective Invariant
 – Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

Can permute the point ordering
 • 4! = 24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry
Measuring height

\[\frac{\| T - B \|}{\| R - B \|} \frac{\| \infty - R \|}{\| \infty - T \|} = \frac{H}{R} \]

scene cross ratio

\[\frac{\| t - b \|}{\| r - b \|} \frac{\| v_z - r \|}{\| v_z - t \|} = \frac{H}{R} \]

image cross ratio

scene points represented as \[P = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \]

image points as \[p = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \]
Finding the vertical (z) vanishing point

Find intersection of projections of vertical lines
Measuring height

\[v \simeq (b \times b_0) \times (v_x \times v_y) \]

vanishing line (horizon)

\[t \simeq (v \times t_0) \times (r \times b) \]

image cross ratio

\[\frac{||t-b|| ||v_z - r||}{||r-b|| ||v_z - t||} = \frac{H}{R} \]
What if the point on the ground plane b_0 is not known?

- Here the person is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above
3D modeling from a photograph

St. Jerome in his Study, H. Steenwick

3D modeling from a photograph
3D modeling from a photograph

Flagellation, Piero della Francesca
3D modeling from a photograph

video by Antonio Criminisi
3D modeling from a photograph

Flagelliation. Piero della Francesca. c1453.
Related problem: camera calibration

• Goal: estimate the camera parameters
 – Version 1: solve for 3x4 projection matrix

\[
\begin{bmatrix}
w_x \\
w_y \\
w
\end{bmatrix} =
\begin{bmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix} = \Pi X
\]

– Version 2: solve for camera parameters separately
 • intrinsics (focal length, principal point, pixel size)
 • extrinsics (rotation angles, translation)
 • radial distortion
Vanishing points and projection matrix

\[\Pi = \begin{bmatrix} * & * & * & * \\ \pi_1 & \pi_2 & \pi_3 & \pi_4 \end{bmatrix} = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 & \pi_4 \end{bmatrix} \]

- \(\pi_1 = \Pi [1 \ 0 \ 0 \ 0]^T = \mathbf{v}_x \) (X vanishing point)
- similarly, \(\pi_2 = \mathbf{v}_y \), \(\pi_3 = \mathbf{v}_z \)
- \(\pi_4 = \Pi [0 \ 0 \ 0 \ 1]^T = \text{projection of world origin} \)

\[\Pi = \begin{bmatrix} \mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z & \mathbf{0} \end{bmatrix} \]

Not So Fast! We only know \(\mathbf{v}'s \) up to a scale factor

\[\Pi = \begin{bmatrix} a \mathbf{v}_x & b \mathbf{v}_y & c \mathbf{v}_z & \mathbf{0} \end{bmatrix} \]

- Can fully specify by providing 3 reference points with known coordinates
Calibration using a reference object

- Place a known object in the scene
 - identify correspondence between image and scene
 - compute mapping from scene to image

Issues
- must know geometry very accurately
- must know 3D -> 2D correspondence
AR codes

ArUco
Estimating the projection matrix

• Place a known object in the scene
 – identify correspondence between image and scene
 – compute mapping from scene to image

\[
\begin{bmatrix}
 u_i \\
 v_i \\
 1
\end{bmatrix} \rightarrow
\begin{bmatrix}
 m_{00} & m_{01} & m_{02} & m_{03} \\
 m_{10} & m_{11} & m_{12} & m_{13} \\
 m_{20} & m_{21} & m_{22} & m_{23}
\end{bmatrix}
\begin{bmatrix}
 X_i \\
 Y_i \\
 Z_i \\
 1
\end{bmatrix}
\]
Alternative: multi-plane calibration

Advantage

• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online! (including in OpenCV)
 – Amy Tabb’s camera calibration software: https://github.com/amy-tabb/basic-camera-calibration
Single-image depth prediction using deep learning

Image → Depth map

MiDaS depth prediction

https://gradio.app/g/AK391/MiDaS

https://github.com/intel-isl/MiDaS
Single-image depth prediction

Picture credit: Magritte, The Treachery of Images, and the Berkeley Computer Vision Group
Deep geometry prediction

• More on this topic later!
Questions?