CS5670: Computer Vision
Lecture 2: Edge detection

From Sandlot Science
Announcements

• Project 1 (Hybrid Images) is now on the course webpage (see Projects link)
 – Due Friday, Feb 10, by 8pm on Github Classroom
 – Artifact due Monday, Feb 13, by 8pm on CMSX
 – Project to be done individually
 – Skeleton code available soon on Github Classroom – instructions for setting up Python environment on the project webpage

• Course webpage: https://www.cs.cornell.edu/courses/cs5670/2023sp/
 – Has lectures, projects, office hours, etc

• In-class Quiz first 10 minutes of class this Thursday
Project 1 Demo
Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels
Origin of edges

• Edges are caused by a variety of factors
Images as functions...

- Edges look like steep cliffs
Characterizing edges

• An edge is a place of *rapid change* in the image intensity function

Source: L. Lazebnik
Image derivatives

- How can we differentiate a *digital* image $F[x,y]$?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x, y] \approx F[x + 1, y] - F[x, y]$$

How would you implement this as a linear filter?

Source: S. Seitz
The gradient points in the direction of most rapid increase in intensity.

The edge strength is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right)$$

• how does this relate to the direction of the edge?
Image gradient

Source: L. Lazebnik
Effects of noise

Where is the edge?

Source: S. Seitz
Solution: smooth first

To find edges, look for peaks in \(\frac{d}{dx} (f * h) \)

Source: S. Seitz
Differentiation is convolution, and convolution is associative:

\[
\frac{d}{dx} (f \ast h) = f \ast \frac{d}{dx} h
\]

This saves us one operation: \(f \)
The 1D Gaussian and its derivatives

\[G_\sigma(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} \]

\[G'_\sigma(x) = \frac{d}{dx} G_\sigma(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma} \right) G_\sigma(x) \]
2D edge detection filters

Gaussian

$$h_\sigma(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x} h_\sigma(u, v)$$
Derivative of Gaussian filter

\[x \text{-direction} \quad y \text{-direction} \]
The Sobel operator

- Common approximation of derivative of Gaussian

\[
\begin{array}{c|c|c}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{array}
\]

- The standard definition of the Sobel operator omits the 1/8 term
 - doesn’t make a difference for edge detection
 - the 1/8 term is needed to get the right gradient magnitude
Sobel operator: example
Example

original image

Demo: http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Image credit: Joseph Redmon
Finding edges

smoothed gradient magnitude
Finding edges

smoothed gradient magnitude
Finding edges

where is the edge?

thresholding
Get Orientation at Each Pixel

- Get orientation (below, threshold at minimum gradient magnitude)

\[\theta = \text{atan2}(g_y, g_x) \]
Non-maximum suppression

- Check if pixel is local maximum along gradient direction
 - requires interpolating pixels p and r
Before Non-max Suppression
After Non-max Suppression
Thresholding edges

• Still some noise
• Only want strong edges
• 2 thresholds, 3 cases
 • $R > T$: strong edge
 • $R < T$ but $R > t$: weak edge
 • $R < t$: no edge
• Why two thresholds?
Connecting edges

- Strong edges are edges!
- Weak edges are edges iff they connect to strong
- Look in some neighborhood (usually 8 closest)
Canny edge detector

MATLAB: `edge(image,'canny')`

1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon
Canny edge detector

• Our first computer vision pipeline!
• Still a widely used edge detector in computer vision

• Depends on several parameters:

 high threshold
 low threshold
 \(\sigma \) : width of the Gaussian blur
Canny edge detector

- The choice of σ depends on desired behavior
 - large σ detects “large-scale” edges
 - small σ detects fine edges

Source: S. Seitz
Properties of scale space (w/ Gaussian smoothing)
- edge position may shift with increasing scale (σ)
- two edges may merge with increasing scale
- an edge may **not** split into two with increasing scale
Questions?