Idea: projecting images onto a common plane

each image is warped with a homography ${f H}$

We'll see what this homography means later.

First -- Can't create a 360 panorama this way...

- mosaic PP

Project 3

- Take pictures on a tripod (or handheld)
- Warp to spherical coordinates (optional if using homographies to align images)
- Extract features
- Align neighboring pairs using RANSAC
- Write out list of neighboring translations
- Blend the images
- Correct for drift
- Now enjoy your masterpiece!

Spherical projection

unwrapped sphere

- Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(sin\theta cos\phi, sin\phi, cos\theta cos\phi) = (\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, s\phi) + (\tilde{x}_c, \tilde{y}_c)$$

 s defines size of the final image
» often convenient to set s = camera focal length in pixels

Spherical reprojection

input f = 200 (pixels) f = 400 f = 800

Map image to spherical coordinates
– need to know the focal length

Modeling distortion

- To model lens distortion with panoramas
 - Use above projection operation after projecting onto a sphere

Aligning spherical images

- Suppose we rotate the camera by $\boldsymbol{\theta}$ about the vertical axis
 - How does this change the spherical image?
 - Translation by $\boldsymbol{\theta}$
 - This means that we can align spherical images by translation

Defines a least squares problem: minimize $\|Ah - 0\|^2$

- Since $\, h \,$ is only defined up to scale, solve for unit vector $\, \, \hat{h} \,$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more matches (8 rows in A). How do you find these points?

Assembling the panorama

• Stitch pairs together, blend, then crop

Blending

• We've aligned the images – now what?

Image Blending

Feathering: Linear Interpolation

Alpha Blending

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$ color at $p = \frac{(\alpha_1 R_1, \alpha_1 G_1, \alpha_1 B_1) + (\alpha_2 R_2, \alpha_2 G_2, \alpha_2 B_2) + (\alpha_3 R_3, \alpha_3 G_3, \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Problem: Drift

- Solution
 - add another copy of first image at the end
 - this gives a constraint: $y_n = y_1$
 - there are a bunch of ways to solve this problem
 - add displacement of $(y_1 y_n)/(n 1)$ to each image after the first
 - apply an affine warp: y' = y + ax [you will implement this for P3]
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as "bundle adjustment"

Demo