Idea: projecting images onto a common plane

Project 3

- Take pictures on a tripod (or handheld)
- Warp to spherical coordinates (optional if using homographies to align images)
- Extract features
- Align neighboring pairs using RANSAC
- Write out list of neighboring translations
- Blend the images
- Correct for drift
- Now enjoy your masterpiece!

Spherical projection

- Map 3D point (X,Y,Z) onto sphere

$$
(\widehat{x}, \widehat{y}, \widehat{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(s \theta, s \phi)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

- s defines size of the final image
" often convenient to set s = camera focal length in pixels

Spherical reprojection

input

$\mathrm{f}=\mathbf{2 0 0}$ (pixels)

$\mathrm{f}=400$

$\mathrm{f}=\mathbf{8 0 0}$

- Map image to spherical coordinates
- need to know the focal length

Modeling distortion

$$
\begin{array}{cl}
\text { Project }(\hat{x}, \hat{y}, \hat{z}) & x_{n}^{\prime}=\hat{x} / \widehat{z} \\
\text { to "normalized" } \\
\text { image coordinates } & y_{n}^{\prime}=\widehat{y} / \widehat{z}
\end{array}
$$

$$
r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2}
$$

Apply radial distortion

$$
x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
$$

$$
y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
$$

Apply focal length translate image center

$$
\begin{aligned}
x^{\prime} & =f x_{d}^{\prime}+x_{c} \\
y^{\prime} & =f y_{d}^{\prime}+y_{c}
\end{aligned}
$$

- To model lens distortion with panoramas
- Use above projection operation after projecting onto a sphere

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?
- Translation by θ
- This means that we can align spherical images by translation

Solving for homographies

$$
\left[\begin{array}{ccccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\
x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\
0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Defines a least squares problem: minimize $\|A h-0\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Solution: $\hat{\mathbf{h}}=$ eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more matches (8 rows in A). How do you find these points?

Assembling the panorama

- Stitch pairs together, blend, then crop

Blending

- We've aligned the images - now what?

Image Blending

Feathering: Linear Interpolation

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb er=7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&a $\underline{\text { rAuthor=Blinn\%2C+J.F. }}$

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) $R G B \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha=0$?

Problem: Drift

- Solution
- add another copy of first image at the end
- this gives a constraint: $y_{n}=y_{1}$
- there are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- apply an affine warp: $y^{\prime}=\mathbf{y}+\mathbf{a x}$ [you will implement this for P3]
- run a big optimization problem, incorporating this constraint
- best solution, but more complicated
- known as "bundle adjustment"

Demo

