CS5670: Computer Vision

Course review

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic/Notes</th>
<th>Readings</th>
<th>Assignments, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Intro and Overview (ppt.pdf)</td>
<td>Szelski 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Image Basics (ppt.pdf)</td>
<td>Szelski 3.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Image filtering and edge detection (ppt.pdf)</td>
<td>Szelski 3.2</td>
<td>PA1 Released</td>
</tr>
<tr>
<td>3</td>
<td>Image Restoration (ppt.pdf)</td>
<td>Szelski 3.4, 2.3.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feature Detection (ppt.pdf)</td>
<td>Szelski 4.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Feature Detection (ppt.pdf)</td>
<td>Szelski 4.1</td>
<td>PA1 due on Thursday</td>
</tr>
<tr>
<td>6</td>
<td>Feature Descriptors (ppt.pdf)</td>
<td>Szelski 4.1</td>
<td>PA2 Released</td>
</tr>
<tr>
<td>7</td>
<td>Image Transformations (ppt.pdf)</td>
<td>Szelski 3.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Image Augmentation (ppt.pdf)</td>
<td>Szelski 6.1</td>
<td>PA2 due on Friday</td>
</tr>
<tr>
<td>9</td>
<td>RANSAC (ppt.pdf)</td>
<td>Szelski 6.1</td>
<td>Take-home midterm exam release;</td>
</tr>
<tr>
<td>10</td>
<td>Cameras (ppt.pdf)</td>
<td>Szelski 2.1.3-2.3.6</td>
<td>Take-home midterm exam due on Friday;</td>
</tr>
<tr>
<td>11</td>
<td>Panoramas (ppt.pdf)</td>
<td>Szelski 9</td>
<td>PA3 Released</td>
</tr>
</tbody>
</table>
Announcements

• Final exam to be distributed on Gradescope today at 5pm
• Due electronically on Gradescope on Monday, 5/17, at 7pm
• Course evaluations open: https://apps.engineering.cornell.edu/CourseEval/
Topics: Image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
 - Harris corners
 - SIFT
 - Invariant features
- Feature matching
Topics: 2D geometry

• Image transformations
• Image alignment / least squares
• RANSAC
• Panoramas
Topics: 3D geometry

- Cameras
- Perspective projection
- Single-view modeling (points, lines, vanishing points, etc.)
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo
Topics: Geometry, continued

- Light, color, perception
- Lambertian reflectance
- Photometric stereo
Topics: Recognition

- Different kinds of recognition problems
 - Classification, detection, segmentation, etc.
- Machine learning basics
 - Nearest neighbors
 - Linear classifiers
 - Hyperparameters
 - Training, test, validation datasets
- Loss functions for classification
Topics: Recognition, continued

• Neural networks
• Convolutional neural networks
 – Architectural components: convolutional layers, pooling layers, fully connected layers
 – Training CNNs
• Generative methods (including GANs)
• Ethical considerations in computer vision
• Deep learning and geometry
Image Processing
Linear filtering

• One simple function on images: linear filtering (cross-correlation, convolution)
 – Replace each pixel by a linear combination of its neighbors

• The prescription for the linear combination is called the “kernel” (or “mask”, “filter”)

<table>
<thead>
<tr>
<th>10</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Source: L. Zhang
Convolution

- Same as cross-correlation, except that the kernel is “flipped” (horizontally and vertically)

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

This is called a convolution operation:

\[
G = H \ast F
\]

- Convolution is commutative and associative
Gaussian Kernel

\[G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

Source: C. Rasmussen
The gradient points in the direction of most rapid increase in intensity:

\[\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix} \]

The edge strength is given by the gradient magnitude:

\[||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

The gradient direction is given by:

\[\theta = \tan^{-1} \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right) \]

- how does this relate to the direction of the edge?
Finding edges

gradient magnitude
Finding edges

thinning
(non-maximum suppression)
Image sub-sampling

Why does this look so crufty?

Source: S. Seitz
Subsampling with Gaussian pre-filtering

• Solution: filter the image, then subsample

Source: S. Seitz
Image interpolation

- **sinc(x)** → “Ideal” reconstruction
- **II(x)** → Nearest-neighbor interpolation
- **Λ(x)** → Linear interpolation
- **gauss(x)** → Gaussian reconstruction

Source: B. Curless
Image interpolation

Original image × 10

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation
The second moment matrix

The surface $E(u,v)$ is locally approximated by a quadratic form.

\[E(u, v) \approx Au^2 + 2Bu\nu + Cv^2 \]

\[\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[A = \sum_{(x,y)\in W} I_x^2 \]

\[B = \sum_{(x,y)\in W} I_x I_y \]

\[C = \sum_{(x,y)\in W} I_y^2 \]
The Harris operator

λ_{min} is a variant of the “Harris operator” for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\text{determinant}(H)}{\text{trace}(H)}$$

- The trace is the sum of the diagonals, i.e., $\text{trace}(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
- Lots of other detectors, this is one of the most popular
Laplacian of Gaussian

• “Blob” detector

• Find maxima and minima of LoG operator in space and scale
Scale-space blob detector: Example

sigma = 11.9912
Feature distance

How to define the difference between two features f_1, f_2?

- Better approach: ratio distance = $\|f_1 - f_2\| / \|f_1 - f_2'\|$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values for ambiguous matches
2D Geometry
Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?

- Is the same for any point p
- Can be described by just a few numbers (parameters)

Let’s consider *linear* xforms (can be represented by a 2D matrix):

$$p' = Tp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
2D image transformations

These transformations are a nested set of groups

- Closed under composition and inverse is a member
Projective Transformations aka Homographies aka Planar Perspective Maps

\[
H = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & 1
\end{bmatrix}
\]

Called a homography (or planar perspective map)
Inverse Warping

- Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x,y)$ in $f(x,y)$
 - Requires taking the inverse of the transform
Affine transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 ax + by + c \\
 dx + ey + f \\
 1
\end{bmatrix}
\]
Solving for affine transformations

• Matrix form

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & x_2 & y_2 & 1 \\
 & & & \vdots & \\
 x_n & y_n & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & x_n & y_n & 1 \\
\end{bmatrix} \begin{bmatrix}
 a \\
 b \\
 c \\
 d \\
 e \\
 f \\
\end{bmatrix} = \begin{bmatrix}
 x_1' \\
 y_1' \\
 x_2' \\
 y_2' \\
 \vdots \\
 x_n' \\
 y_n' \\
\end{bmatrix}
\]

\[
A_{2n \times 6} \quad t_{6 \times 1} = b_{2n \times 1}
\]
RANSAC

• General version:
 1. Randomly choose s samples
 • Typically $s =$ minimum sample size that lets you fit a model
 2. Fit a model (e.g., line) to those samples
 3. Count the number of inliers that approximately fit the model
 4. Repeat N times
 5. Choose the model that has the largest set of inliers
Projecting images onto a common plane

Each image is warped with a homography H

Can’t create a 360 panorama this way...
3D Geometry
Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?
Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
z/d \\
1
\end{bmatrix} \Rightarrow \left(-d \frac{x}{z}, -d \frac{y}{z} \right)$$

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**
Projection matrix

\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Point and line duality

– A line \mathbf{l} is a homogeneous 3-vector
– It is \perp to every point (ray) \mathbf{p} on the line: $\mathbf{l} \cdot \mathbf{p} = 0$

What is the intersection of two lines \mathbf{l}_1 and \mathbf{l}_2?

• \mathbf{p} is \perp to \mathbf{l}_1 and \mathbf{l}_2 \Rightarrow $\mathbf{p} = \mathbf{l}_1 \times \mathbf{l}_2$

Points and lines are dual in projective space
Vanishing points

- Properties
 - Any two parallel lines (in 3D) have the same vanishing point \(v \)
 - The ray from \(C \) through \(v \) is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point
Measuring height

Camera height

Turtle's height: 3.3 units

Human's height: 2.8 units

5.4 units at the top of the ruler.
Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image
 • compare with every pixel on same epipolar line in right image
 • pick pixel with minimum match cost

Improvement: match windows
Stereo as energy minimization

- Better objective function

\[E(d) = E_d(d) + \lambda E_s(d) \]

- Want each pixel to find a good match in the other image
- Adjacent pixels should (usually) move about the same amount
Fundamental matrix

- This epipolar geometry of two views is described by a Very Special 3x3 matrix F, called the Fundamental matrix.
- F maps (homogeneous) points in image 1 to lines in image 2!
- The epipolar line (in image 2) of point p is $epipolar \ line = q$.
- Epipolar constraint on corresponding point: $q^T F p = 0$.

Diagram notes:
- p and q are points in image 1 and image 2, respectively.
- 0 and t are the principal points of the two images.
Epipolar geometry example
Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

\[x'^T F x = 0 \]

for any pair of matches x and x’ in two images.

• Let \(x = (u, v, 1)^T \) and \(x' = (u', v', 1)^T \),

\[
F = \begin{bmatrix}
 f_{11} & f_{12} & f_{13} \\
 f_{21} & f_{22} & f_{23} \\
 f_{31} & f_{32} & f_{33}
\end{bmatrix}
\]

each match gives a linear equation

\[uu' f_{11} + vu' f_{12} + u' f_{13} + uv f_{21} + vv' f_{22} + v' f_{23} + uf_{31} + v f_{32} + f_{33} = 0 \]
8-point algorithm

\[
\begin{bmatrix}
 u_1u_1' & v_1u_1' & u_1' & u_1v_1' & v_1v_1' & v_1' & u_1 & v_1 & 1 \\
 u_2u_2' & v_2u_2' & u_2' & u_2v_2' & v_2v_2' & v_2' & u_2 & v_2 & 1 \\
 \vdots & \vdots \\
 u_nu_n' & v_nu_n' & u_n' & u_nv_n' & v_nv_n' & v_n' & u_n & v_n & 1
\end{bmatrix}
\begin{bmatrix}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{bmatrix} = 0
\]

- As with homographies, instead of solving \(\mathbf{Af} = 0 \), we seek unit length \(\mathbf{f} \) to minimize \(\mathbf{Af} \) : least eigenvector of \(\mathbf{A}^T \mathbf{A} \).
Structure from motion

\[\prod_1 X_1 \sim p_{11} \]

\[
\begin{align*}
X_1 & \quad X_2 \\
X_3 & \quad X_4 \\
X_5 & \quad X_6 \\
X_7 &
\end{align*}
\]

\[
\text{minimize } f(R, T, P)
\]

non-linear least squares

Camera 1
\[R_1, t_1 \]

Camera 2
\[R_2, t_2 \]

Camera 3
\[R_3, t_3 \]
Stereo: another view
Multiple-baseline stereo

Fig. 5. SSD values versus inverse distance: (a) $B = h$; (b) $B = 2h$; (c) $B = 3h$; (d) $B = 4h$; (e) $B = 5h$; (f) $B = 6h$; (g) $B = 7h$; (h) $B = 8h$.

The horizontal axis is normalized such that $SSD = 1$.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.
Plane-Sweep Stereo

• Sweep family of planes parallel to the reference camera image plane
• Reproject neighbors onto each plane (via homography) and compare reprojections
Light, reflectance, cameras
Radiometry

• What determines the brightness of an image pixel?
Materials - Three Forms

In computer vision, we like Lambertian materials.
Photometric stereo

Can write this as a matrix equation:

\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix} = k_d \begin{bmatrix}
L_1^T \\
L_2^T \\
L_3^T
\end{bmatrix} N
\]
Example
Recognition / Deep Learning
Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

cat
Object detection
k-nearest neighbor

- Find the k closest points from training data
- Take **majority vote** from K closest points
Hyperparameters

• What is the **best distance** to use?
• What is the **best value of k** to use?

• These are **hyperparameters**: choices about the algorithm that we set rather than learn

• How do we set them?
 – One option: try them all and see what works best
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Your Dataset

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

<table>
<thead>
<tr>
<th>train</th>
<th>test</th>
</tr>
</thead>
</table>

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on **val** and evaluate on **test**

Better!

| train | validation | test |
Parametric approach: Linear classifier

\[f(x, W) = Wx + b \]

- **[32x32x3]** array of numbers 0...1
- Parameters, or “weights”
- 10 numbers, indicating class scores
Loss function, cost/objective function

• Given ground truth labels (y_i), scores $f(x_i, W)$
 – how unhappy are we with the scores?

• Loss function or objective/cost function measures unhappiness

• During training, want to find the parameters W that minimizes the loss function
Softmax classifier

\[f(x_i, W) = WX_i \]

[1, -2, 0] → [e^1, e^{-2}, e^0] = [2.71, 0.14, 1] → [0.7, 0.04, 0.26]

Interpretation: squashes values into range 0 to 1

\[P(y_i \mid x_i; W) \]
Neural networks

(Before) Linear score function:

\[f = Wx \]

(Now) 2-layer Neural Network

\[f = W_2 \max(0, W_1 x) \]

![Diagram of 2-layer neural network with matrices and dimensions](image)
Convolutional neural networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1
“Generative Adversarial Network” (GANs)

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]
BW → Color

Data from [Russakovsky et al. 2015]
Labels → Street Views

Data from [Wang et al, 2018]
Datasets – Potential Ethical Issues

• Licensing and ownership of data
• Consent of photographer and people being photographed
• Offensive content
• Bias and underrepresentation
 – Including amplifying bias
• Unintended downstream uses of data
Learning 3D geometry

RGB Image → Deep learning → Depth map
Mapping images to images with the UNet architecture

Input RGB Image

Output image (depth map)
NeRF: Full Neural 3D reconstruction

https://www.matthewtancik.com/nerf
NeRF Results
Questions?

• Good luck!