

Which month is the best month?

(i) Start presenting to display the poll results on this slide.

CS5670: Computer Vision

Deep Learning and Geometry

RGB Image

Depth map

Deep learning

Announcements

- Please give us feedback! Fill out course evaluations here (for bonus points!):
 - <u>https://apps.engineering.cornell.edu/CourseEval/</u>
- Project 5 due tomorrow, Tuesday, May 11 at 7pm
- Take-home final exam to be released May 12, due May 17 by 7pm
- Wednesday: course review / wrap up (last lecture of class)
- No quiz on Wednesday

Luca Spinazzola and Nicolas Carchio

Xindong Chen and Yehao Zhang

Kaiyuan Deng and Scarlett Zhang

3D Computer Vision

80s - 90s: RANSAC, Fundamental matrix

2000s: stereo, multiview stereo, Internet-scale 3D reconstruction

2015+: learning-based 3D vision

Single-view modeling (late 1990s)

Vermeer's Music Lesson

Reconstructions by Criminisi et al.

Can we use deep learning to predict geometry from a single image?

Astonishing recent progress in learning 3D perception

"Blocks world" Larry Roberts (1963)

Pre-deep era (2005)

[Saxena, Chung, Ng, NIPS 2005] [Hoiem, Efros, Hebert, SIGGRAPH 2005]

Supervised deep learning (2014 -)

Single RGB Image

[Eigen, Puhrsch, Fergus, NIPS 2014] [Song et al, CVPR 2017]

ao/im2depth

[Garg, Kumar BG, Carneiro, Reid, ECCV 2016] [Xie, Girshick, Farhadi, ECCV 2016] [Zhou, Brown, Snavely, Lowe, CVPR 2017] [Vijayanarasimhan, et al., 2017] [Godard, Mac Aodha & Brostow, CVPR 2017] [Mahjourian, Wicke & Angelova, CVPR 2018]

Multi-view supervision (2016-)

Canonical problem: single RGB view to depth

[Sinha & Adelson, 1993]

Learning single-view depth prediction

• To apply deep learning to this problem we need lots of training data in the form of RGB images and corresponding depth maps

Source: https://diode-dataset.org/

CNN architectures for single-view depth

- Need an architecture that takes in an image (an RGB image) and produces another image (a depth map)
- Similar to other problems where images are the outputs (e.g., semantic segmentation, colorization, object boundary detection)
- In contrast to image classification, where outputs are probabilities for a set of object categories (e.g., vector of length 1000)

Common choice: UNet architecture

How to get training data?

KITTI [Geiger et al. 2012]

NYU [Eigen et al. 2014]

Direct, real-world training data is limited for geometric problems

Problem: generalizing beyond training data

• If you train on images of streets scenes from KITTI, you won't get good results on test images like this:

Input RGB image

Predicted depth map from KITTI-trained model

How can we gather more diverse data?

Can we learn 3D from simply observing all the images / videos on the Internet?

Training: Multiple views

Testing: Single Image

Idea 1: Structure from Motion reconstructions

[Snavely, Seitz, Szeliski. Photo Tourism. SIGGRAPH 2006]

Reconstructing the World's Landmarks

[Li, Snavely, Huttenlocher, Fua. ECCV 2012]

MegaDepth dataset

- >130K (RGB, depth map) pairs
 - generated from 200+ landmarks
 - reconstructed with SfM + MVS using COLMAP [Schoenberger et al]

[Zhengqi Li and Noah Snavely. MegaDepth: Learning Single-View Depth Prediction from Internet Photos. CVPR 2018]

MegaDepth-trained prediction results

Internet data generalizes well

Train on X, test on Make3D

Train on X, test on KITTI

Train on X, test on DIW

More depth prediction results

Central Park, NYC

Grand Canal, Venice

Trafalgar Square, London

Venetian Hotel, Las Vegas Sultan Ahmed Mosque, Mosque

Seville Cathedral, Seville

Notre-Dame Basilica, Montreal

Trevi Fountain, Rome

Medici Fountain, Paris

Single-view depth from Megadepth model

Predicted depth map

Questions?

A related task: view synthesis

- So much for single-view depth
- Another thing we might want to do is *render new views of the captured scene* (i.e., view synthesis)
- Involves more than just depth, but also filling in missing content behind the foreground

Cool recent work on view synthesis

- Meng-Li Shih, Shih-Yang Su, Johannes Kopf, Jia-Bin Huang 3D Photography using Context-aware Layered Depth Inpainting
- <u>https://shihmengli.github.io/3D-Photo-Inpainting/</u>

3D Photography using Context-aware Layered Depth Inpainting

Viewing Devices

Queen Victoria at World Fair, 1851

Issue: Narrow Baseline

Problem Statement

Challenges

Extrapolation

Non-Lambertian Effects

Reflections, transparencies, etc.

Prior Methods: No Shared Scene Representation

[Flynn et al., 2015] [Kalantari et al. 2016]

Prior Methods: No Shared Scene Representation

[Flynn et al., 2015] [Kalantari et al. 2016]

Prior Methods: No Shared Scene Representation

Ours: Shared Scene Representation

Stereo Magnification: Learning View Synthesis using Multiplane Images

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, Noah Snavely

SIGGRAPH 2018

Multiplane Camera (1937)

Image credits: Disney

https://www.youtube.com/watch?v=kN-eCBAOw60 (from 1957)

Multiplane Images (MPIs)

View Synthesis using Multiplane Images

View Synthesis using Multiplane Images

Properties of Multiplane Images

- Models disocclusion
- Models soft edges and non-Lambertian effects
- Efficient for view synthesis
- Differentiable rendering

Learning Multiplane Images

Multiplane Image

Learning Multiplane Images

Training Data

RealEstate10K

10 million frames from 80,000 video clips from 10,000 videos https://google.github.io/realestate10k/

Sampling Training Examples

Sampling Training Examples

Results

24 24

-

Output

Plane 0 Plane 9

Reference input view

Plane 24

Plane 26

Extrapolating Cellphone Footage

I.4 cm

Learning 3D geometry: Key Ingredients

- Use the right representation (*e.g., Multi-plane Images*)
- Train on lots of data (*e.g., Internet videos*)
- Train using a widely available source of supervision *other video frames*
 - This idea of **multi-view supervision** has been very active in 3D vision for the past few years
 - Predict from one frame, test by projecting into another and computing a **reprojection loss**

Other recent MPI-based methods

Single-view MPI Prediction

Input images

Richard Tucker & Noah Snavely, Single-View View Synthesis with Multiplane Images, CVPR 2020

Capturing varying appearance

Zhengqi Li, Wenqi Xian, Abe Davis, Noah Snavely. Crowdsampling the Plenoptic Function. ECCV 2020.

MPIs yield artifacts when moving the camera too far

NeRF: Full Neural 3D reconstruction

Ben Mildenhall*, Pratul P. Srinivasan*, Matthew Tancik*, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020. <u>https://www.matthewtancik.com/nerf</u>

NeRF Results

More NeRF results

NeX

Suttisak Wizadwongsa*, Pakkapon Phongthawee*, Jiraphon Yenphraphai*, Supasorn Suwajanakorn. **NeX: Real-time View Synthesis with Neural Basis Expansion**. CVPR 2021. <u>https://nex-mpi.github.io/</u>

NeRF in the Wild

Ricardo Martin-Brualla*, Noha Radwan*, Mehdi S. M. Sajjadi*, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth. *NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections*. CVPR 2021.<u>https://nerf-w.github.io/</u>

Questions?

Limitation: Dynamic Scenes

- So far, our training data assumes rigid scenes
- Otherwise, SfM / SLAM will fail, as will reprojection loss
- But most scenes have moving and non-rigid objects, especially people

Statues vs. people

https://www.balletforadults.com/back-to-basics-the-five-positions-of-the-arms/

Learning Depths of Moving People by Watching Frozen People

Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, Bill Freeman

CVPR 2019 (best paper runner up)

MannequinChallenge Dataset

- 2000 YouTube videos
- Frozen people, moving camera
- Diverse scenes, natural poses

MannequinChallenge Training Data

"Ground truth" depth from SfM + Multi View Stereo (MVS)

Input video

Estimated depth

Removing Humans for View Synthesis

Takeaways

- Harness the power of *multi-view supervision* for 3D learning
- The Internet is an amazing source of training data full of surprising images and videos
- Representations are important! Layers are one nice approach, but the best representation is elusive
 - Should be expressive, efficient, good for learning, etc...

Future directions

- Train on much more varied (noisier) data (all of YouTube?)
- Much larger view extrapolations (requires better inpainting in disoccluded regions)
- Predicting richer representations from a single view
 - Towards full inverse graphics: image to shape, materials, and geometry

Thanks to the folks behind this work

Richard Tucker

Zhengqi Li

Tinghui Zhou

John Flynn

Graham Fyffe

Tali Dekel

Forrester Cole

Bill Freeman

Questions?