CS5670: Computer Vision

Convolutional neural networks, Part |l

Image Maps

Input

Convolutions R Fully Connected

Subsampling

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/

Announcements

* Project 5 (Convolutional Neural Networks) released today
— Due Tuesday, May 11, 2021 (7:00 pm)

» Take-home final exam to be released Wednesday, May 12,
2021; due Monday, May 17, 2021

« Sample final available on Ed Stem

Readings

» Convolutional neural networks
— http://cs231n.github.io/convolutional-networks/

 Stochastic Gradient Descent & Backpropagation
— http://cs231n.github.io/optimization-1/
— http://cs231n.github.io/optimization-2/

 Best practices for training CNNs
— http://cs231n.github.io/neural-networks-2/
— http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

Project 5 Demo (Ruojin)

Last time

 Neural networks
 Convolutional neural networks

Today

e Convolutional neural networks (continued)
 Training neural networks with backpropagation
 Stochastic gradient descent

» Data processing and augmentation

* CNN architectures

 Transfer learning

Image Classification:
a core task in computer vision

« Assume given set of discrete labels, e.g.
{cat, dog, cow, apple, tomato, truck, ... }

- “apple”
= “tomato’

11 4

= COW

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Recap: Neural networks

* Very coarse generalization:

— Linear functions chained together and separated by non-
linearities (activation functions), e.g. "max”

f = W3 max(0, Ws max (0, Wiz))

Convolutional neural networks

* Made up of many layers of a few different types (mainly
convolution layers)

Image Maps
Input
\Nutput
/ '\ b
Convolutions Fully Connected

Subsampling

Convolutions as network layers

32x32x3 image

32

32

5x5x3 filter (weights are learned)

(7

I| Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”

Convolutional layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

(total number of parameters: 6 x (75 + 1) = 456)

Convolution layer parameters

e Kernel size

* Number of kernels
e Stride

32

32

CONYV,

RelLU
e.g.6
5x5x3
filters

28

28

32

32

CONYV,

RelLU
e.g.6
5x5x3
filters

28

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

24

CONV,
RelLU

Some convolutional network layer types

* Convolution layers (some parameters)

/ 32 convolution layer

A A

8 6

activation maps

» Pooling layers (no parameters)
 Fully connected layers (many, many parameters)

input activation

I' 1 Wx & 7
1 1
5579 10 x 3072 10

weights

AlexNet (2012)

nout CONVA 6M parameters in total
CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8
55
27 Dense Dense
. 13 13 13 Dense
T 5 | 3] 3 R—1— 3 B—I~
2 > \ > . | C (13 ‘ C [13 ‘ C |13 - - -
11 ¥ | 5\ 27 3 ¥ 3 v \ 3 v
384 384 256
22 oG 1000
M?_X 4096 4096
Max pooling
9
224 pooling r
Input : ggﬁ Output: 1,000-D vector
image ~ ° POoIng (probabilities over 1,000
(RGB) S;'ie ImageNet categories)
| | | | | |
Image input 5 Convolution layers 3 Fully-connected

layers
Elgendy, Deep Learning for Vision Systems, https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

“AlexNet” “GoogLeNet” “VGG Net” “ResNet”

.
f conv-64
L. conv-64
u‘u-!u _maxpool |
- 't:' - ~ conv-128
e e e conv-128
: : :’ ~ maxpool
H A5 o : : S conv-256
3 ArE a—!ﬁn conv-256
: L Rl " maxpool
: T
CBE S o s e _conv-512
S | B x’ _conv-512
n g " maxpool
. == f==f=rle=r]
v e ; e e ey = o conv-512
3 §§ 9 : 'ﬁ' conv-512
& > maxpool
gl XJ. l!:;l __FC-4096
y—b N S - FC-4096
o l &} . FC-1000
° 8 . softmax
[Krizhevsky et al. NIPS 2012] [Szegedy et al. CVPR 2015] [Simonyan & Zisserman, [He et al. CVPR 2016]

ICLR 2015]

Big picture

A convolutional neural network can be thought of as a
function from images to class scores
— With millions of adjustable weights...

— ... leading to a very non-linear mapping from images to
features / class scores.

— We will set these weights based on classification accuracy on
training data...

— ... and hopefully our network will generalize to new images at
test time

Data is key—enter ImageNet

* ImageNet (and the ImageNet Large-Scale Visual Recognition
Challege, aka ILSVRC) has been key to training deep learning

methods
— J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fel, ImageNet: A Large-Scale
Hierarchical Image Database. CVPR, 2009.

* ILSVRC: 1,000 object categories, each with ~700-1300 training
iImages. Test set has 100 images per category (100,000 total).

 Standard ILSVRC error metric: top-5 error

— if the correct answer for a given test image is in the top 5 categories,
your answer Is judged to be correct

Performance improvements on ILSVRC

mageNet Large-Scale Visual
Recognition Challenge

Held from 2011-2017

1000 categories, 1000 training
Images per category

Test performance on held-out
test set of images

AIexNet/

Pre-deep

learning era |

= 0.3
©

—
NE]

ImageNet competition results

(o]
01/

s Deep learning era
8 A

:

Qo0 @poo
@BED

30+

[]
h
L]

(]
=

ImageNet Top-5 Error

=
=
[l

—
th
T

28.2

25.8

2010

2011

2012 2013 2014 2014

2015 2016 2017

Image credit: Zaid Alyafeai, Lahouari Ghouti

Questions?

Training the network

« Now we know what the structure of our function from
Images -> class scores is (a CNN)

 How do we set the weights given training data?

How do we set the weights?

* Need to solve an optimization problem:
— Find weights W that minimize training loss L over a training set

* In general this is a non-linear, non-convex problem

— Closed-form solvers do not generally exist, unlike with e.g.
least squares problems

— Might not find the globally optimal weights

* (Side note: some learning problems, such as linear SVMs,
do have convex loss functions)

(Bad) idea #1: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.000]
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

ood) Idea #2: Gradient descent

(Good) Idea #2: Gradient descent

In 1-dimension, the derivative of a function:

df(z) _ . fl@+h) - f(z)
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Scores, losses, and gradients

* Function f maps images to class scores

g = flz; W) 2% fis a deep CNN

* Loss function maps class scores to "badness”

L)

elv
L; = —log (7) Cross-entropy loss
Zje :

Iy = % Zz]\il L; + Ek I/Vk2 Data loss + regularization

want

VwL

(gradient of L w.rt. W, computed analytically)

Gradient descent: iteratively follow the slope

How do we compute gradients for CNNs?

 Recall: a function with a single with N parameters
* Our loss function involves millions of parameters

 Idea 1: Numerically compute derivatives (finite differences)
df(x) _ . flat+h) - fla)

dx h—0 h

h=4

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

"3

-~ -~
-~

-

-~ -~

-~

SCIESIES IR IR RS RS RN

| |

current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?.
0.78, 0.78, ?.
0.12, 0.12, ?.
0.55, 0.55, ?.
2.81, 2.81, ?.
-3.1, -3.1, ?.
-1.5, -1.5, ?.
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

?,
?,

(1.25322 - 1.25347)/0.0001
=-2.5

af(z) _ . fl@+h) - f(z)
h

dx h —0

?,
7.

AR

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

[-2.5,

-~ -~

-

-~ -~

-~

SCIESIES IR IR RS RS RN

| |

current W: W + h (second dim): gradient dW:

[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, ?

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, af() _ . flz+h) - f()
1.5, 1.5, CE
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001.
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
6

]

-~ -~ -~ - -~

-~

N N))) D) O

| |

current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11, 0.6,

0.78, 0.78 + 0.0001, 0,

0.12, 0.12, 2. \

0.55, 0.55, o

281, 281, (=1 625347 - 1.25347)/0.0001
-5, -1, if(x) . f(z+h)— f(z)
-1.5, -1.5, = ik R
0.33,...] 0.33,...] —

loss 1.25347 | loss 1.25347

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001.
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

]
£

Numeric Gradient
- Slow! Need to loop over
all dimensions
- Approximate

a——

But the loss is just a function of W!

N
L= %Zz’ﬂ[’i +Zka2
Li =}, max(0,s; — sy, +1)
s= fle;: W)= We

want VL

Use calculus to compute an
analytic gradient

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

dw = ...
(some function
data and W)

\

gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
0.5,
1.1
1.3
21,

]

Idea #2: Calculating gradients analytically

Flo; W) = Wa
= Z max(0,s; — s, + 1)
Ay

= Z max(0,W;. - x+W,, .-z +1)
jy;

=~ ZL,; +AY W
1 1,;1 k
=N Z Z max(0,W,.-x+W,..-c+1)+ A Z sz
k

i=1 j#y;

N
1 ¢
VwL =Vy (N E E max(0, W, .-z 4+ W, .-x+1)+ A E Wf)
k

1=1 j#y,

Idea #2: Calculating gradients analytically

s = flz; W) = Wa Prolglem: Very tedious: Lots of
L — Z max(0,5; — sy, + 1) matrix calculus, need lots of paper
iy Problem: What if we want to
=) max(0, W, -z + W, -z+1) change loss? E.g. use softmax
iy instead of SVM? Need to
N

re-derive from scratch =(

Problem: Not feasible for very

complex models!
:—ZZmaXOW cx+ Wy, .-x+1) —I—)\ZWk

N
1
Vwl =Vw (N Y max(0, W, x4+ W, -z +1)+)\ZW,?.)
= k

In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check
implementation with numerical gradient. This is called a
gradient check.

Better idea: computation graphs +
backpropagation

f:W L—Zjﬁéymax(Os_7 Sy, + 1)

s (scores)

R(W)

>
Forward pass: compute loss using current weights

>
Backwards pass: compute gradients of loss w.r.t. weights, then update the weights

(backpropagation algorithm)

Backpropagation: a simple example

flz,y,2) = (z +y)z
eg.x=-2,y=5z=-4

f

12

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

f

12

_ 9 . Oq
g=+vy %—1,%—1
of of
f:qz Fq:zaazq
of Of of

Want: 5z Dy’ 02

Backpropagation: a simple example

PN IO

eg.x=-2,y=95,z=+4

— dq dq
- of of of

. Of of 9oFf
Want: 5-, 5y B2

Backpropagation: a simple example | x
q 3
fowd=Gre: |, DO

eg.x=-2,y=5z=-4

o dq dq /‘
g=z+y —=1==1 /
oz By X
af _ of 2
=gz q %79 — 4
of of of

Want: oz By Oz

Backpropagation: a simple example

flz,y,2) = (¢ +y)z
eg.x=-2,y=5z=-4

F-12

_ 9q 4 0q _
q=+Y 5—1,5—1
of _ _ of _
f=gqz q %79 — 4
of of Oof

Want: oz By Oz

of
0z

Backpropagation: a simple example

flz,y,2) = (¢ +y)z
eg.x=-2,y=5z=-4

_ 9q 4 0q _
q=+Y 5—1,5—1
of _ _ of _
f=gqz q %79 — 4
of of Oof

Want: oz By Oz

f-12
1
z -4
3 ‘K
of
0z

Backpropagation: a simple example

PN IO

eg.x=-2,y=95,z=+4

— dq dq
- of of -
= 5 “a; 9 q

. Of of 9oFf
Want: 5-, 5y B2

Backpropagation: a simple example

PSR G

eg.x=-2,y=95,z=+4

_ oq dq
q=T+ty g—l,@—l

of of 3
f:qz a—q:z,azq q

. OoF of of
Want: 5-, 3y’ 02

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-+4

dq dq

of of
f=qz 0 =% =4
. Of Of Oof
Want: Pz Ty Be

Chain rule:

of _ 9 o

Oy d0q Oy
Pl

Upstream Lscal
gradient gradient

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4

_ 9q . Og _
g=z+Y g—l,@—l
of of
f=gqz 9 *08 9
of of of

Want: 9z Dy’ 02

Chain rule:

°F . 9 B

Oy d0q Oy
2

\
Upstream Local
gradient gradient

Backpropagation: a simple example
f(z,y,2) = (¢ +y)z
eg.x=-2,y=5z=-4

g=z+y =1,

& = gy =1
of of
f=gqz 0= %5 =4
. Of of of
Want: o Ty Be

Chain rule:

of _ Of aq

Oy dq Oy
P

%
Upstream Local

gradient

gradient

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-+4

dq dq

of of
f=gqz 0= %3 =4
. Of Of Oof
Want: Pz Ty Be

Chain rule:
of _ of %
or Oq Oz

£ \
Upstream Local
gradient gradient

Backpropagation: a simple example
f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

g=z+y =173

of of _

f=qz =% — 4

Chain rule:

. Of of 0of
Want: oz Oy’ 0z

of _ of 9q
dx ~ 8q Oz

2
Upstream
gradient

X
Local
gradient

Backpropagation

» General idea: Recursive application of the chain rule
(calculus 101) backwards through a computation graph

» Can reuse intermediate calculations computed during the
forwards pass during the backwards pass

 Natural extensions from scalar computations to vector
computations

» Deep learning frameworks like Pytorch / TensorFlow
support efficient automated backpropagation via
automatic differentiation and GPU acceleration

Questions?

What if the training data is very large?

» Recall that ImageNet has >1.2M training images

Loss function is summed over all

N
1
L= N Z L N training images
i=1

N
1 L
V] = — E :VLZ' — Gradl.er.wt |s.also summed over all
N 4 - N training images
1=

« Computing the value of the loss and its gradient over the
entire training set is very expensive in terms of computation

Alternative: stochastic gradient descent

» Approximate the sum using a minibatch of examples
— e.g., 32, 64, or 128 examples

1 B
L=p52 L |
i=1 Where B (e.g. 32) is the
minibatch size

—
1 B
VL:E '_51VL7;

* For each step of gradient descent, choose a different batch

Stochastic gradient descent (SGD)

A full pass through the dataset (i.e., using batches that
cover the training data) is called an epoch

» Usually need to train for multiple epochs, i.e., multiple full
passes through the dataset to converge

 Stochastic gradient descent approximates the true
gradient, but works remarkably well in practice

HoOw doO you actually
train these things”

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss
iﬁﬁ%’l&.ll&~‘iﬂﬁﬂll!ulngw=ﬁ¥§:Il‘II e ﬁé%ﬂw
JEa=E Wew i O Flu: <ER 915 -
MEEEErDe . gl | Naes
~mJeaEmcil ol o Fam

- -1~ BT 11 | | e =
b [e [A 8 A
A] - Y N L

Dickeybird

S

-‘gﬂ“ng g-;- ‘g‘“&““ Lo - %M m::gaq!
Eigﬁ_q:g.g,|l||lnfna—-iﬁlilzrl ol -]

mEls s BaEN T e -
T R T T e
DS « . ¥ S v

pefeafa

Training a convolutional
neural network

Split and preprocess your data

Choose your network architecture

Initialize the weights

Find a learning rate and regularization strength
Minimize the loss and monitor progress

Fiddle with knobs

Why so complicated?

 Training deep networks can be finicky — lots of parameters
to learn, complex, non-linear optimization function

Visualizing Linear Classification
(slides from Abe Davis)

1+ . 1 [T
0.5 \\ }’ 0.5 \\ /’
N\ / \ /
[~ P []
0 \\ // or \\ //
N\)4 \ /
\
\ / \ /
0.5 \ / — 0.5 F \
N\ / \ /
\\ // \\ //
N s N 4
1 I - - - . 1 ; - - - !
-1 -0.5 4] 0.5 1 -1 -0.5 4] 0.5 1
Classification Problem: Linear Solution

Separate Red & Blue

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topoloqgy/

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Visualizing Classification With a Neural Network

input

Hidden Layer

Example Network

Output

if § 4
—— = (40}
-
I — (. 1 + { { r 1 { { 1 1 | N S C
\ /)
0.5 \\ /{ g
I
\\)/ E
_— P (@)
0 “\ yd “—
\\ 1/ c
(@)
—
\ / o
05} ‘\ / Z
\ Y—
\ / o
\\ j/ ~
N / —
>
a1k | 8
1 0.5 0 0.5 1 S
@)

Output x of Neuron from Hidden Layer

Classification Results for Every Classification Results for Every
Point in Original Space Point in Transformed Feature Space

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topoloqgy/

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

What Makes Training Deep Nets Hard?

* It’s easy to get high training
accuracy:

» Use a huge, fully connected
network with tons of layers

* Let it memorize your training data

» Its hard to get high test accuracy

QOO
QOO0 O
QOO OO

— QOO0

This would be an
example of overfitting

— OO0OCO00U

Related Question: Why Convolutional Layers?

» A fully connected layer can
generally represent the same
functions as a convolutional one

 Think of the convolutional layer
as a version of the FC layer with
constraints on parameters

* What is the advantage of CNNs?

Convolutional Layer

QOO ()
Ol01010010

Fully Connected Layer

Overfitting: More Parameters, More Problems

* Non-Deep Example: consider the function 72 +— X

* Let’s take some noisy samples of the function...

Ground Truth

120

100 A1

80 1

60 1

40 1

20 +

-15 -10 -5

Noisy Samples

120

100 A1

80 1

60 1

40

20 +

15

Poly Fit Degree 1

120

100 1

80 1

60 1

40

Poly Fit Degree 7

15

120

100 1

80 1

15

Poly Fit Degree 2

100 1

80 1

60 1

40

-10

Poly Fit Degree 9

10

15

120

100 A

80 1

60 1

40 4

20 1

-15

~10

15

Poly Fit Degree 3

120

100 1

80 1

60 1

401

20 1

-15

-10 -5 0 5 10 15

Poly Fit Degree 11

20

J0 1

30 4

-10 10 15

» Now lets fit a polynomial to our samples of the form Py (x

Overfitting: More Parameters, More Problems

N

) = Zﬂfkpk

k=0

Poly Fit Degree 5

100 1

80 1

60 1

40

20 1

-15

-10

-5 0 5 10 15

Poly Fit Degree 13

120

100 1

80 1

60 1

40

20 1

-15

~10

=5 0 5 10 15

Overfitting: More Parameters, More Problems

* A model with more parameters can
represent more functions

‘Eg,lf PN Zgj Dk thenP2€P15

k=0

» More parameters will often reduce
training error but increase testing
error. This is overfitting.

* When overtitting happens, models do not
generalize well.

120

100 A1

80 ~

60

40 1

20 1

0 4

Degree 2 Fit

-15

120

100 +

80 ~

60 -

40 A

20 +

15

Degree 15 Fit

-15

15

Deep Learning: More Parameters, More Problems?

» More parameters let us represent a
larger space of functions

 The larger that space is, the harder
our optimization becomes

e This means we need:
« More data
« More compute resources

QOO ()
Ol01010010

« Etc. Convolutional Layer Fully Connected Layer

Deep Learning: More Parameters, More Problems?

A convolutional layer
looks for components

of a function that are \

S pat| d I |y' | Nnva ri d nt Convolutional Layer Fully Connected Layer

Q
Q
Q
QO
O
O

OOO0O00

How to Avoid Overfitting: Regularization

* In general:
« More parameters means higher risk of overfitting
« More constraints/conditions on parameters can help

» If a model is overtfitting, we can
e Collect more data to train on

* Regularize: add some additional information or assumptions to better
constrain learning

» Regularization can be done through:
* the design of architecture
* the choice of loss function
* the preparation of data

Regularization: Architecture Choice

» “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

Convolutional Layer

QOO ()
Ol01010010

Fully Connected Layer

Regularization

Regularization reduces overfitting:
Lo
L L T L Lreg — A’_HW‘ |2

data

A =0.001 A =0.01

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data
. A
0 - 0 - 0
\J
e B 19 e -5 0 S 19 e =5 0 5 10
X -= np.mean(axis=0, keepdims=True)

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

An input image (256x256) Minus sign The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

Batch normalization

 Side note — can also perform normalization after each
layer of the network to stabilize network training (“batch
normalization”)

(1) Data preprocessing

Augment the data — extract random crops from the
iInput, with slightly jittered offsets. Without this, typical
ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live
during training

Figure: Alex Krizhevsky

(2) Choose your architecture

A Neural Network Playgi X

< C' | @ Secure | https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0... v¢ [J

.0

DATA

Which dataset do
you want to use?

%

Ratio of training to
test data: 50%

—e

Noise: 0

Batch size: 10

—e

REGENERATE

Epoch

Learning rate Activation Regularization Regularization rate

000,000 0.03 Tanh - None 0

FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which properties Test loss 0.507
do you want to _ _ Training loss 0.504
feed in? & +
4 neurons 2 neurons
X1
X2
'

f

£
This is the output
from neuron
Hove see it
larger

Colors shows
data, neuron and
weight values

https.//playground.tensorflow.org/

I

MNeelh
3. i
= B

Problem type

Classification

https://playground.tensorflow.org/

“AlexNet”

[Krizhevsky et al. NIPS 2012]

“GoogLeNet”

[Szegedy et al. CVPR 2015]

(2) Choose your architecture

“VGG Net”

image
conv-64

conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512

conv-512
maxpool
FC-4096

FC-4096

FC-1000
softmax

[Simonyan & Zisserman,
ICLR 2015]

Very common
modern choice

uuuuuuu

U

Je et al. CVPR 201

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use RelLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(4) Overtit a small portion of the data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number rlasses
trainer = ClassifierTrainer()
X_tiny = X_train[:20] # take 20 examples 4_

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

(4) Overtit a small portion of the data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples ‘—

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sqgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1: constant learning rate
sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data
Slide: Andrej Karpathy

(4) Overtit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val ©.400000, lr 1.000000e-03

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03 :

Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, Lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val ©.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03 .
Finished epoch 195 / 200: cost 0.002694, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train:j1.000000 .000000, 1r 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train:j1.000000 .000000, 1r 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train:|]1.000000 .000000, 1r 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train:j1.000000 .000000, lr 1.000000e-03
finished optimization. best validation accuracy: 1.00000C

Slide: Andrej Karpathy

(4) Find a learning rate

low learning rate
o Q: Which one of these
high learning rate . .
learning rates is best to use?

good learning rate

L earning rate schedule

How do we change the learning rate over time?
Various choices:

e Step down by a factor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GooglLeNet [Szegedy 2014])

e Scale by sgrt(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

 Scale by 1/
» Scale by exp(-t)

Summary of things to fiddle

* Network architecture
* Learning rate, decay schedule, update type

e Regularization (L2, L1, maxnorm, dropouit, ...)

e Loss function (softmax, SVM, ...)

* Weight initialization

Neural network
parameters

Summary of things to fiddle

 Network architecture
e Learning rate, decay schedule, update type (+batch size)

e Regularization (L2, L1, maxnorm, dropouit, ...)

e Loss function (softmax, SVM, ...)

* Weight initialization

Neural network
parameters

Questions?

Transfer Learning

“You need a lot of a data if you want to
trainfuse CNNs”

Transfer Learning

“You need a lot of &If you want to
train f@ Ns”

Donahue et al, "DeCAF: A Deep Convalutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs i e o e SV nctons
2014
1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv64

Conv64

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv64
Conv64

2. Small Dataset (C classes)

FC-4096

MaxP ool
Conv-512
Conv-512

MaxP ool
Conv-512
Conv-512

MaxP ool
Conv-256
Conv-256

MaxP ool
Conv-128
Conv-128

MaxP ool
Conv-54
Conv-54

J

Reinitialize
this and train

Freeze these

Donahue et al, "DeCAF: A Deep Convalutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNMN Features Off-the-Shelf: An
Astounding Baseline far Recognition”, CVPR Wiorkshaops
2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv64
Conv64

2. Small Dataset (C classes)

n

[-
O
o

cL

FC-4096

MaxP ool
Conv-512
Conv-512

MaxP ool
Conv-512
Conv-512

MaxP ool
Conv-256
Conv-256

MaxP ool
Conv-128
Conv-128

MaxP ool
Conv-54
Conv-54

_j

\-_

Reinitialize
this and train

> Freeze these

Donahue et al, "DeCAF: A Deep Convalutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNMN Features Off-the-Shelf: An
Astounding Baseline far Recognition”, CVPR Wiorkshaops

2014

3. Bigger dataset

F

c-C

FC-4096
FC-4096

MaxP ool
Conv-512
Conv-512

MaxP ool
Conv-512
Conv-512

MaxP ool
Conv-256
Conv-256

MaxP ool
Conv-128
Conv-128

MaxP ool
Conv-54
Conv-54

_J

.

Train these

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR

is good starting
point

FC-1000
FC-4096
FC-4096

MaxPool
Conv612
Conv612

MaxPool
Conv612
Conv612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | ? ?
? ?

quite a lot of
data

FC-1000
FC-4096
FC-4096

MaxPool
Conv612
Conv612

MaxPool
Conv612
Conv612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | Use Linear ?
Classifier on
top layer
quite a lot of Finetune a ?
data few layers

FC-1000
FC-4096
FC-4096

MaxPool
Conv612
Conv612

MaxPool
Conv612
Conv612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number
of layers

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection
(Fast R-CNN) e] Image Captioning: CNN + RNN

Propnsal
classifiar

“hat” END

—__ | Bounding box “ ”
D regrassors StfaW

Exlernal proposal

algorithm p.

e.g. selective search P 2 '
/

ConvNet
{applied to entira

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CYPR 2015

Girshick, "Fast R-CNN", ICCY 2015 : : ;
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Figure copyright Ross Girshick, 2015. Reproduced with permission.

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection -
(Fast R-CNN) [t s CNN pretrained Image Captioning: CNN + RNN
: on ImageNet

Bounding hox
= regrassors

Propnsal
classifizr

“straw” “hat” END

Exlernal proposal
algorithm
e.g. selective search

ConvNet
{applied to entira

START “straw” “hat”

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CYPR 2015

Girshick, "Fast R-CNN", ICCY 2015 X ! :
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Figure copyright Ross Girshick, 2015. Reproduced with permission.

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Object Detection _
(Fast R-CNN) [ot i | CNN pretrained

7 o onlmageNet

~1 Bounding hox
regrassors

Image Captioning: CNN + RNN

Prapasal | Linear +
classifisr | softmon

“straw” “hat” END

Exlernal proposal ——— ol
algorithm :
e.g. selective zearch

ConvNet
{applied to entira
image}

START “straw” “hat”

Word vectors pretrained
. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCY 2015 Wlt h WO rd2v e C Generating Image Descriptions”, CYPR 2015

Figure copyright Ross Girshick, 2015, Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Takeaway for your projects and beyond.:
Have some dataset of interest but it has < ~1M Images?

1. Find a very large dataset that has
similar data, train a big ConvNet there

2. Transfer learn to your dataset ,
Common modern approach:

start with a ResNet
architecture pre-trained on
ImageNet, and fine-tune on
your (smaller) dataset

Deep learning frameworks provide a “Model Zoo" of
pretrained models so you don’t need to train your own

TensorFlow: htips://qithub.com/tensorflow/models
PyTorch: https://aithub.com/pytorch/vision

Questions?

