CS5670: Computer Vision

Convolutional neural networks, Part II

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung <u>http://vision.stanford.edu/teaching/cs231n/</u>

Announcements

- Project 5 (Convolutional Neural Networks) released today – Due Tuesday, May 11, 2021 (7:00 pm)
- Take-home final exam to be released Wednesday, May 12, 2021; due Monday, May 17, 2021
- Sample final available on Ed Stem

Readings

- Convolutional neural networks
 - <u>http://cs231n.github.io/convolutional-networks/</u>
- Stochastic Gradient Descent & Backpropagation
 - http://cs231n.github.io/optimization-1/
 - http://cs231n.github.io/optimization-2/
- Best practices for training CNNs
 - http://cs231n.github.io/neural-networks-2/
 - http://cs231n.github.io/neural-networks-3/

Project 5 Demo (Ruojin)

Last time

- Neural networks
- Convolutional neural networks

Today

- Convolutional neural networks (continued)
- Training neural networks with backpropagation
- Stochastic gradient descent
- Data processing and augmentation
- CNN architectures
- Transfer learning

Image Classification: a core task in computer vision

 Assume given set of discrete labels, e.g. {cat, dog, cow, apple, tomato, truck, ... }

Recap: Neural networks

- Very coarse generalization:
 - Linear functions chained together and separated by nonlinearities (*activation functions*), e.g. "max"

$$f=W_3\max(0,W_2\max(0,W_1x))$$

Convolutional neural networks

• Made up of many layers of a few different types (mainly *convolution layers*)

Convolutions as network layers

32x32x3 image

5x5x3 filter (weights are learned)

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolutional layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

(total number of parameters: $6 \times (75 + 1) = 456$)

Convolution layer parameters

- Kernel size
- Number of kernels
- Stride

Some convolutional network layer types

• Convolution layers (some parameters)

- Pooling layers (no parameters)
- Fully connected layers (many, many parameters)

AlexNet (2012)

6M parameters in total

Elgendy, Deep Learning for Vision Systems, https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

"ResNet"

[He et al. CVPR 2016]

ICLR 2015]

Big picture

- A convolutional neural network can be thought of as a function from images to class scores
 - With millions of adjustable weights...
 - ... leading to a very non-linear mapping from images to features / class scores.
 - We will set these weights based on classification accuracy on training data...
 - ... and hopefully our network will generalize to new images at test time

Data is key—enter ImageNet

- ImageNet (and the ImageNet Large-Scale Visual Recognition Challege, aka ILSVRC) has been key to training deep learning methods
 - J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. CVPR, 2009.
- **ILSVRC**: 1,000 object categories, each with ~700-1300 training images. Test set has 100 images per category (100,000 total).
- Standard ILSVRC error metric: top-5 error
 - if the correct answer for a given test image is in the top 5 categories, your answer is judged to be correct

Performance improvements on ILSVRC

- ImageNet Large-Scale Visual Recognition Challenge
- Held from 2011-2017
- 1000 categories, 1000 training images per category
- Test performance on held-out test set of images

Image credit: Zaid Alyafeai, Lahouari Ghouti

Questions?

Training the network

- Now we know what the structure of our function from images -> class scores is (a CNN)
- How do we set the weights given training data?

How do we set the weights?

- Need to solve an optimization problem:
 - Find weights W that minimize training loss L over a training set
- In general this is a non-linear, non-convex problem
 - Closed-form solvers do not generally exist, unlike with e.g. least squares problems
 - Might not find the globally optimal weights
- (Side note: some learning problems, such as linear SVMs, do have convex loss functions)

(Bad) idea #1: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
  W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
  loss = L(X train, Y train, W) # get the loss over the entire training set
  if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad! (SOTA is ~95%)

(Good) Idea #2: Gradient descent

(Good) Idea #2: Gradient descent

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Scores, losses, and gradients

• Function *f* maps images to class scores

$$s=f(x;W)=Wx$$
 f is a deep CNN

• Loss function maps class scores to "badness"

$$L_i = -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$
 Cross-entropy loss

 $L = rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$ Data loss + regularization

want $\nabla_W L$ (gradient of L w.r.t. W, computed analytically)

Gradient descent: iteratively follow the slope

How do we compute gradients for CNNs?

- Recall: a function with a single with N parameters
- Our loss function involves millions of parameters
- Idea 1: Numerically compute derivatives (finite differences)

current W:		gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]		[?, ?, ?, ?, ?, ?, ?, ?,]
	I	

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1,	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1,	[?, ?, ?, ?, ?, ?, ?,
-1.5, 0.33,…] loss 1.25347	-1.5, 0.33,…] loss 1.25322	?, ?,]

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001 = -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11, 0.78,	-1.11 + 0.0001 , 0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?, ?,...]

current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25353	$[-2.5, 0.6, \?, \?, \?, \]$ $(1.25353 - 1.25347)/0.0007$ $= 0.6$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $?, \dots]$
-3.1, -1.5, 0.33,…] loss 1.25347	-3.1, -1.5, 0.33,…] Ioss 1.25353	$\frac{\left\lfloor \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + y)}{y} \right\rfloor}{?, \dots}$
current W:	W + h (third dim):	
--------------	------------------------	
[0.34,	[0.34,	
-1.11,	-1.11,	
0.78,	0.78 + 0.0001 ,	
0.12,	0.12,	
0.55,	0.55,	
2.81,	2.81,	
-3.1,	-3.1,	
-1.5,	-1.5,	
0.33,]	0.33,]	
loss 1.25347	loss 1.25347	

gradient dW:

[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?, ?, ...]

current W:	W + h (third dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34, -1.11, 0.78 + 0.0001 , 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[-2.5, 0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

current W:	W + h (third dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34, -1.11, 0.78 + 0.0001 , 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] IOSS 1.25347	[-2.5, 0.6, 0, ?, Numeric Gradient - Slow! Need to loop over all dimensions - Approximate

But the loss is just a function of W!

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

This image is in the public domain

This image is in the public domain

Idea #2: Calculating gradients analytically

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$T_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

7

Idea #2: Calculating gradients analytically

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Better idea: computation graphs + backpropagation

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Backpropagation

- General idea: Recursive application of the chain rule (calculus 101) backwards through a computation graph
- Can reuse intermediate calculations computed during the forwards pass during the backwards pass
- Natural extensions from scalar computations to vector computations
- Deep learning frameworks like Pytorch / TensorFlow support efficient automated backpropagation via automatic differentiation and GPU acceleration

Questions?

What if the training data is very large?

• Recall that ImageNet has >1.2M training images

 Computing the value of the loss and its gradient over the entire training set is **very** expensive in terms of computation

Alternative: stochastic gradient descent

- Approximate the sum using a **minibatch** of examples
 - e.g., 32, 64, or 128 examples

• For each step of gradient descent, choose a different batch

Stochastic gradient descent (SGD)

- A full pass through the dataset (i.e., using batches that cover the training data) is called an **epoch**
- Usually need to train for multiple epochs, i.e., multiple full passes through the dataset to converge
- Stochastic gradient descent approximates the true gradient, but works remarkably well in practice

How do you actually train these things?

Roughly speaking:

Gather labeled data

Find a ConvNet architecture

Minimize the loss

Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength
- Minimize the loss and monitor progress
- Fiddle with knobs

Why so complicated?

 Training deep networks can be finicky – lots of parameters to learn, complex, non-linear optimization function

Visualizing Linear Classification (slides from Abe Davis)

Visualizing Classification With a Neural Network

Classification Results for Every Point in Original Space Classification Results for Every Point in Transformed Feature Space

Demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

What Makes Training Deep Nets Hard?

- It's easy to get high training accuracy:
 - Use a huge, fully connected network with tons of layers
 - Let it memorize your training data
- Its hard to get high *test* accuracy

This would be an example of *overfitting*

Related Question: Why Convolutional Layers?

- A fully connected layer can generally represent the same functions as a convolutional one
 - Think of the convolutional layer as a version of the FC layer with constraints on parameters
- What is the advantage of CNNs?

Convolutional Layer

Fully Connected Layer

Overfitting: More Parameters, More Problems

- Non-Deep Example: consider the function $x^2 + x$
- Let's take some noisy samples of the function...

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form $P_N(x) = \sum x^k p_k$

k=0

Overfitting: More Parameters, More Problems

• A model with more parameters can represent more functions

• E.g.,: if
$$P_N(x) = \sum_{k=0}^N x^k p_k$$
 then $P_2 \in P_{15}$

- More parameters will often **reduce training error** but **increase testing error**. This is *overfitting*.
- When overfitting happens, models do not generalize well.

Deep Learning: More Parameters, More Problems?

- More parameters let us represent a larger space of functions
- The larger that space is, the harder our optimization becomes

- This means we need:
 - More data
 - More compute resources
 - Etc.

Convolutional Layer

Fully Connected Layer

Deep Learning: More Parameters, More Problems?

A convolutional layer looks for components of a function that are spatially-invariant

Convolutional Layer

Fully Connected Layer

How to Avoid Overfitting: Regularization

- In general:
 - More parameters means higher risk of overfitting
 - More constraints/conditions on parameters can help
- If a model is overfitting, we can
 - Collect more data to train on
 - *Regularize*: add some additional information or assumptions to better constrain learning
- Regularization can be done through:
 - the design of architecture
 - the choice of loss function
 - the preparation of data

• ...

Regularization: Architecture Choice

• "Bigger" architectures (typically, those with more parameters) tend to be more at risk of overfitting.

Convolutional Layer

Fully Connected Layer

Regularization

Regularization reduces overfitting:

$$L = L_{\text{data}} + L_{\text{reg}} \qquad \qquad L_{\text{r}}$$

$$L_{\rm reg} = \lambda \frac{1}{2} ||W||_2^2$$

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

An input image (256x256)

Minus sign

The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

Batch normalization

 Side note – can also perform normalization after each layer of the network to stabilize network training ("batch normalization")

(1) Data preprocessing

Augment the data — extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live during training

Figure: Alex Krizhevsky

(2) Choose your architecture

https://playground.tensorflow.org/

(2) Choose your architecture

"AlexNet" "GoogLeNet" "VGG Net" -1411-241 A STREET Max and a second [Krizhevsky et al. NIPS 2012] [Szegedy et al. CVPR 2015]

[Simonyan & Zisserman, ICLR 2015]

image

conv-64

conv-64 maxpool

conv-128

conv-128 maxpool

conv-256 conv-256 maxpool conv-512 conv-512

maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

ResNet He et al. CVPR 2016

Very common modern choice

(3) Initialize your weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use ReLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

(4) Overfit a small portion of the data

Details:

'sgd': vanilla gradient descent (no momentum etc)

learning_rate_decay = 1: constant learning rate

sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data

Slide: Andrej Karpathy

(4) Overfit a small portion of the data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished enceh 20 / 200, each 1 205760 train. 0 650000 unl 0 650000 la 1 0000000 02
Finished epoch 195 / 200: cost 0.002694, train: 1.000000 val 1.000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002034, train: 1.0000000 val 1.0000000, tr 1.0000000 03
Finished epoch 107 / 200, cost 0.002674, train. 1.000000, val 1.000000, tr 1.000000 03
Finished epoch 197 / 200: Cost 0.002055, train: 1.0000000, Vat 1.0000000, tr 1.0000000e-03
Finished epoch 198 / 200: cost 0.002635, train: 1.0000000, val 1.0000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03
finished optimization. best validation accuracy: 1.000000

Slide: Andrej Karpathy

(4) Find a learning rate

Q: Which one of these learning rates is best to use?

Learning rate schedule

How do we change the learning rate over time?

Various choices:

- Step down by a factor of 0.1 every 50,000 mini-batches (used by SuperVision [Krizhevsky 2012])
- Decrease by a factor of 0.97 every epoch (used by GoogLeNet [Szegedy 2014])
- Scale by sqrt(1-t/max_t) (used by BVLC to re-implement GoogLeNet)
- Scale by 1/t
- Scale by exp(-t)

Summary of things to fiddle

- Network architecture
- Learning rate, decay schedule, update type
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Summary of things to fiddle

- Network architecture
- Learning rate, decay schedule, update type (+batch size)
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Questions?

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 More generic MaxPool	very little data	?	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	?	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Takeaway for your projects and beyond: Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: <u>https://github.com/tensorflow/models</u> PyTorch: <u>https://github.com/pytorch/vision</u> Common modern approach: start with a ResNet architecture pre-trained on ImageNet, and fine-tune on your (smaller) dataset

Questions?