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Announcements

• Project 5 (Convolutional Neural Networks) released today 

– Due Tuesday, May 11, 2021 (7:00 pm)

• Take-home final exam to be released Wednesday, May 12, 

2021; due  Monday, May 17, 2021

• Sample final available on Ed Stem



Readings

• Convolutional neural networks

– http://cs231n.github.io/convolutional-networks/

• Stochastic Gradient Descent & Backpropagation

– http://cs231n.github.io/optimization-1/

– http://cs231n.github.io/optimization-2/

• Best practices for training CNNs

– http://cs231n.github.io/neural-networks-2/

– http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/


Project 5 Demo (Ruojin)



Last time

• Neural networks

• Convolutional neural networks



Today

• Convolutional neural networks (continued)

• Training neural networks with backpropagation

• Stochastic gradient descent

• Data processing and augmentation

• CNN architectures

• Transfer learning



Image Classification: 

a core task in computer vision

• Assume given set of discrete labels, e.g. 

{cat, dog, cow, apple, tomato, truck, … }



Recap: Neural networks

• Very coarse generalization:

– Linear functions chained together and separated by non-

linearities (activation functions), e.g. “max”



Convolutional neural networks

• Made up of many layers of a few different types (mainly 

convolution layers)



Convolutions as network layers

(weights are learned)



(total number of parameters: 6 x (75 + 1) = 456)

Convolutional layer



Convolution layer parameters

• Kernel size

• Number of kernels

• Stride







Some convolutional network layer types

• Convolution layers (some parameters)

• Pooling layers (no parameters)

• Fully connected layers (many, many parameters)

convolution layer



AlexNet (2012)

Output: 1,000-D vector 

(probabilities over 1,000 

ImageNet categories)

Elgendy, Deep Learning for Vision Systems, https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

6M parameters in total

https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/




Big picture

• A convolutional neural network can be thought of as a 

function from images to class scores

– With millions of adjustable weights… 

– … leading to a very non-linear mapping from images to 

features / class scores.

– We will set these weights based on classification accuracy on 

training data…

– … and hopefully our network will generalize to new images at 

test time



Data is key—enter ImageNet

• ImageNet (and the ImageNet Large-Scale Visual Recognition 

Challege, aka ILSVRC) has been key to training deep learning 

methods
– J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale 

Hierarchical Image Database. CVPR, 2009.

• ILSVRC: 1,000 object categories, each with ~700-1300 training 

images. Test set has 100 images per category (100,000 total).

• Standard ILSVRC error metric: top-5 error

– if the correct answer for a given test image is in the top 5 categories, 

your answer is judged to be correct



Performance improvements on ILSVRC

• ImageNet Large-Scale Visual 

Recognition Challenge

• Held from 2011-2017

• 1000 categories, 1000 training 

images per category

• Test performance on held-out 

test set of images

AlexNet

Pre-deep 

learning era {Deep learning era



Image credit: Zaid Alyafeai, Lahouari Ghouti



Questions?



Training the network

• Now we know what the structure of our function from 

images -> class scores is (a CNN)

• How do we set the weights given training data?



How do we set the weights?

• Need to solve an optimization problem:

– Find weights W that minimize training loss L over a training set

• In general this is a non-linear, non-convex problem

– Closed-form solvers do not generally exist, unlike with e.g. 

least squares problems

– Might not find the globally optimal weights

• (Side note: some learning problems, such as linear SVMs, 

do have convex loss functions)



(Bad) idea #1: Random search





(Good) Idea #2: Gradient descent



(Good) Idea #2: Gradient descent



Scores, losses, and gradients

f is a deep CNN 

Cross-entropy loss

Data loss + regularization

• Function f maps images to class scores

• Loss function maps class scores to “badness” 

(gradient of L w.r.t. W, computed analytically)



Gradient descent: iteratively follow the slope



How do we compute gradients for CNNs?

• Recall: a function with a single with N parameters 

• Our loss function involves millions of parameters

• Idea 1: Numerically compute derivatives (finite differences)



















But the loss is just a function of W!





Idea #2: Calculating gradients analytically 



Idea #2: Calculating gradients analytically 





Better idea: computation graphs + 

backpropagation

Forward pass: compute loss using current weights 

Backwards pass: compute gradients of loss w.r.t. weights, then update the weights

(backpropagation algorithm)





























Backpropagation

• General idea: Recursive application of the chain rule 

(calculus 101) backwards through a computation graph

• Can reuse intermediate calculations computed during the 

forwards pass during the backwards pass

• Natural extensions from scalar computations to vector 

computations

• Deep learning frameworks like Pytorch / TensorFlow 

support efficient automated backpropagation via 

automatic differentiation and GPU acceleration



Questions?



What if the training data is very large?

• Recall that ImageNet has >1.2M training images

• Computing the value of the loss and its gradient over the 

entire training set is very expensive in terms of computation

Loss function is summed over all 

N training images 

Gradient is also summed over all 

N training images 



Alternative: stochastic gradient descent

• Approximate the sum using a minibatch of examples

– e.g., 32, 64, or 128 examples

• For each step of gradient descent, choose a different batch

Where B (e.g. 32) is the 

minibatch size



Stochastic gradient descent (SGD)

• A full pass through the dataset (i.e., using batches that 

cover the training data) is called an epoch

• Usually need to train for multiple epochs, i.e., multiple full 

passes through the dataset to converge

• Stochastic gradient descent approximates the true 

gradient, but works remarkably well in practice 







Why so complicated?

• Training deep networks can be finicky – lots of parameters 

to learn, complex, non-linear optimization function



Visualizing Linear Classification 
(slides from Abe Davis)

Classification Problem:
Separate Red & Blue

Linear Solution

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


Visualizing Classification With a Neural Network

Classification Results for Every 
Point in Original Space

Classification Results for Every 
Point in Transformed Feature Space

Example Network

input

Hidden Layer

Output

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/


Demo
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


• It’s easy to get high training 
accuracy:
• Use a huge, fully connected 

network with tons of layers

• Let it memorize your training data

• Its hard to get high test accuracy

What Makes Training Deep Nets Hard?

… …

This would be an 

example of overfitting



• A fully connected layer can 
generally represent the same 
functions as a convolutional one

• Think of the convolutional layer 
as a version of the FC layer with 
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional Layer Fully Connected Layer



Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function 

• Let’s take some noisy samples of the function…



Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form  



• A model with more parameters can 
represent more functions

• E.g.,: if                                    then

• More parameters will often reduce 
training error but increase testing 
error. This is overfitting.

• When overfitting happens, models do not 
generalize well.

Overfitting: More Parameters, More Problems

Degree 2 Fit

Degree 15 Fit



• More parameters let us represent a 
larger space of functions

• The larger that space is, the harder 
our optimization becomes

• This means we need:

• More data

• More compute resources

• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer



Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

A convolutional layer 

looks for components 

of a function that are 

spatially-invariant



• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better 

constrain learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• … 

How to Avoid Overfitting: Regularization



• “Bigger” architectures (typically, 
those with more parameters) tend 
to be more at risk of overfitting.

Regularization: Architecture Choice

Convolutional Layer Fully Connected Layer









Batch normalization

• Side note – can also perform normalization after each 

layer of the network to stabilize network training (“batch 

normalization”)





(2) Choose your architecture

https://playground.tensorflow.org/

https://playground.tensorflow.org/


(2) Choose your architecture
Very common 

modern choice



(if you use ReLU activations, folks tend to initialize bias to small positive number)









(4) Find a learning rate







(+batch size)



Questions?

























Common modern approach:  

start with a ResNet

architecture pre-trained on 

ImageNet, and fine-tune on 

your (smaller) dataset



Questions?


