
Convolutional neural networks, Part II

CS5670: Computer Vision

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung

http://vision.stanford.edu/teaching/cs231n/

http://vision.stanford.edu/teaching/cs231n/

Announcements

• Project 5 (Convolutional Neural Networks) released today

– Due Tuesday, May 11, 2021 (7:00 pm)

• Take-home final exam to be released Wednesday, May 12,

2021; due Monday, May 17, 2021

• Sample final available on Ed Stem

Readings

• Convolutional neural networks

– http://cs231n.github.io/convolutional-networks/

• Stochastic Gradient Descent & Backpropagation

– http://cs231n.github.io/optimization-1/

– http://cs231n.github.io/optimization-2/

• Best practices for training CNNs

– http://cs231n.github.io/neural-networks-2/

– http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/neural-networks-2/
http://cs231n.github.io/neural-networks-3/

Project 5 Demo (Ruojin)

Last time

• Neural networks

• Convolutional neural networks

Today

• Convolutional neural networks (continued)

• Training neural networks with backpropagation

• Stochastic gradient descent

• Data processing and augmentation

• CNN architectures

• Transfer learning

Image Classification:

a core task in computer vision

• Assume given set of discrete labels, e.g.

{cat, dog, cow, apple, tomato, truck, … }

Recap: Neural networks

• Very coarse generalization:

– Linear functions chained together and separated by non-

linearities (activation functions), e.g. “max”

Convolutional neural networks

• Made up of many layers of a few different types (mainly

convolution layers)

Convolutions as network layers

(weights are learned)

(total number of parameters: 6 x (75 + 1) = 456)

Convolutional layer

Convolution layer parameters

• Kernel size

• Number of kernels

• Stride

Some convolutional network layer types

• Convolution layers (some parameters)

• Pooling layers (no parameters)

• Fully connected layers (many, many parameters)

convolution layer

AlexNet (2012)

Output: 1,000-D vector

(probabilities over 1,000

ImageNet categories)

Elgendy, Deep Learning for Vision Systems, https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

6M parameters in total

https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

Big picture

• A convolutional neural network can be thought of as a

function from images to class scores

– With millions of adjustable weights…

– … leading to a very non-linear mapping from images to

features / class scores.

– We will set these weights based on classification accuracy on

training data…

– … and hopefully our network will generalize to new images at

test time

Data is key—enter ImageNet

• ImageNet (and the ImageNet Large-Scale Visual Recognition

Challege, aka ILSVRC) has been key to training deep learning

methods
– J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale

Hierarchical Image Database. CVPR, 2009.

• ILSVRC: 1,000 object categories, each with ~700-1300 training

images. Test set has 100 images per category (100,000 total).

• Standard ILSVRC error metric: top-5 error

– if the correct answer for a given test image is in the top 5 categories,

your answer is judged to be correct

Performance improvements on ILSVRC

• ImageNet Large-Scale Visual

Recognition Challenge

• Held from 2011-2017

• 1000 categories, 1000 training

images per category

• Test performance on held-out

test set of images

AlexNet

Pre-deep

learning era {Deep learning era

Image credit: Zaid Alyafeai, Lahouari Ghouti

Questions?

Training the network

• Now we know what the structure of our function from

images -> class scores is (a CNN)

• How do we set the weights given training data?

How do we set the weights?

• Need to solve an optimization problem:

– Find weights W that minimize training loss L over a training set

• In general this is a non-linear, non-convex problem

– Closed-form solvers do not generally exist, unlike with e.g.

least squares problems

– Might not find the globally optimal weights

• (Side note: some learning problems, such as linear SVMs,

do have convex loss functions)

(Bad) idea #1: Random search

(Good) Idea #2: Gradient descent

(Good) Idea #2: Gradient descent

Scores, losses, and gradients

f is a deep CNN

Cross-entropy loss

Data loss + regularization

• Function f maps images to class scores

• Loss function maps class scores to “badness”

(gradient of L w.r.t. W, computed analytically)

Gradient descent: iteratively follow the slope

How do we compute gradients for CNNs?

• Recall: a function with a single with N parameters

• Our loss function involves millions of parameters

• Idea 1: Numerically compute derivatives (finite differences)

But the loss is just a function of W!

Idea #2: Calculating gradients analytically

Idea #2: Calculating gradients analytically

Better idea: computation graphs +

backpropagation

Forward pass: compute loss using current weights

Backwards pass: compute gradients of loss w.r.t. weights, then update the weights

(backpropagation algorithm)

Backpropagation

• General idea: Recursive application of the chain rule

(calculus 101) backwards through a computation graph

• Can reuse intermediate calculations computed during the

forwards pass during the backwards pass

• Natural extensions from scalar computations to vector

computations

• Deep learning frameworks like Pytorch / TensorFlow

support efficient automated backpropagation via

automatic differentiation and GPU acceleration

Questions?

What if the training data is very large?

• Recall that ImageNet has >1.2M training images

• Computing the value of the loss and its gradient over the

entire training set is very expensive in terms of computation

Loss function is summed over all

N training images

Gradient is also summed over all

N training images

Alternative: stochastic gradient descent

• Approximate the sum using a minibatch of examples

– e.g., 32, 64, or 128 examples

• For each step of gradient descent, choose a different batch

Where B (e.g. 32) is the

minibatch size

Stochastic gradient descent (SGD)

• A full pass through the dataset (i.e., using batches that

cover the training data) is called an epoch

• Usually need to train for multiple epochs, i.e., multiple full

passes through the dataset to converge

• Stochastic gradient descent approximates the true

gradient, but works remarkably well in practice

Why so complicated?

• Training deep networks can be finicky – lots of parameters

to learn, complex, non-linear optimization function

Visualizing Linear Classification
(slides from Abe Davis)

Classification Problem:
Separate Red & Blue

Linear Solution

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Visualizing Classification With a Neural Network

Classification Results for Every
Point in Original Space

Classification Results for Every
Point in Transformed Feature Space

Example Network

input

Hidden Layer

Output

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

O
u
tp

u
t

y
 o

f
N

eu
ro

n
 f

ro
m

 H
id

d
en

 L
ay

er

Output x of Neuron from Hidden Layer

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Demo
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

• It’s easy to get high training
accuracy:
• Use a huge, fully connected

network with tons of layers

• Let it memorize your training data

• Its hard to get high test accuracy

What Makes Training Deep Nets Hard?

… …

This would be an

example of overfitting

• A fully connected layer can
generally represent the same
functions as a convolutional one

• Think of the convolutional layer
as a version of the FC layer with
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional Layer Fully Connected Layer

Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function

• Let’s take some noisy samples of the function…

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form

• A model with more parameters can
represent more functions

• E.g.,: if then

• More parameters will often reduce
training error but increase testing
error. This is overfitting.

• When overfitting happens, models do not
generalize well.

Overfitting: More Parameters, More Problems

Degree 2 Fit

Degree 15 Fit

• More parameters let us represent a
larger space of functions

• The larger that space is, the harder
our optimization becomes

• This means we need:

• More data

• More compute resources

• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

Deep Learning: More Parameters, More Problems?

Convolutional Layer Fully Connected Layer

A convolutional layer

looks for components

of a function that are

spatially-invariant

• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better

constrain learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• …

How to Avoid Overfitting: Regularization

• “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

Regularization: Architecture Choice

Convolutional Layer Fully Connected Layer

Batch normalization

• Side note – can also perform normalization after each

layer of the network to stabilize network training (“batch

normalization”)

(2) Choose your architecture

https://playground.tensorflow.org/

https://playground.tensorflow.org/

(2) Choose your architecture
Very common

modern choice

(if you use ReLU activations, folks tend to initialize bias to small positive number)

(4) Find a learning rate

(+batch size)

Questions?

Common modern approach:

start with a ResNet

architecture pre-trained on

ImageNet, and fine-tune on

your (smaller) dataset

Questions?

