CS5670: Computer Vision

Image Classification

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/
Announcements

• Project 4 due tomorrow, 4/20, by 7pm (both code and output)
• Final exam – default plan is to release on May 12, 2021, with due date of May 17, 2021
 • Please see EdStem to register for CIVS for a poll collecting input on other options
 • https://civs1.civs.us/cgi-bin/opt_in.pl
 • Please vote by tomorrow, Tuesday April 20, by 10am

• April 23-26 (Friday – Monday) are Wellness Days
• Project 5 to be released Monday May 3 (in two weeks), due Tuesday May 11 at 7pm
References

• Stanford CS231N
 • http://cs231n.stanford.edu/
• Many slides courtesy of Abe Davis
Image Classifiers in a Nutshell

- Input: an image
- Output: the class label for that image

- Label is generally one or more of the discrete labels used in training

 - e.g. \{cat, dog, cow, toaster, apple, tomato, truck, ... \}

```python
def classifier(image):
    # Do some stuff
    return class_label;
```

\[
f\left(\text{Cat} \right) = \text{“Cat”}
\]

\[
f\left(\text{Dog} \right) = \text{“Dog”}
\]

\[
f\left(\text{Toaster} \right) = \text{“Toaster”}
\]
Image classification demo

See also:
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

https://cloud.google.com/vision/docs/drag-and-drop
The Semantic Gap

What we see

What the computer sees
Variation Makes Recognition Hard

• The same class of object can appear very differently in different images
The Problem is Under-constrained

- Distinct realities can produce the same image...
- We generally can’t compute the “right” answer, but we can compute the most likely one...
- We need some kind of prior to condition on. We can learn this prior from data:

\[f(x) = \arg\max_{\ell_x} P(\ell_x|\text{data}) \]
Images As High-Dimensional Vectors

• An image is just a bunch of numbers
• Let’s stack them up into a vector
 • Our training data is just a bunch of high-dimensional points now
Images As High-Dimensional Vectors

• An image is just a bunch of numbers

• Let’s stack them up into a vector
 • Our training data is just a bunch of high-dimensional points now

• Divide space into different regions for different classes

The Space of All Images
Images As High-Dimensional Vectors

• An image is just a bunch of numbers

• Let’s stack them up into a vector
 • Our training data is just a bunch of high-dimensional points now

• Divide space into different regions for different classes
Images As High-Dimensional Vectors

• An image is just a bunch of numbers
• Let’s stack them up into a vector
 • Our training data is just a bunch of high-dimensional points now

• Divide space into different regions for different classes

or

• Define a distribution over space for each class

The Space of All Images

An image is just a bunch of numbers
Let’s stack them up into a vector
• Our training data is just a bunch of high-dimensional points now

Divide space into different regions for different classes

or

Define a distribution over space for each class
How high-dimensional is an image?
 - Let’s consider an iPhone X photo:
 - 4032 x 3024 pixels
 - Every pixel has 3 colors
 - 36,578,304 pixels (36.5 Mega pixels)

In practice, images sit on a lower-dimensional manifold

Think of image features and dimensionality reduction as ways to represent images by their location on such manifolds

The Space of All Images
Training & Testing a Classifier

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images
Training & Testing a Classifier

Training

Training Images

Image Features

Training

Learned Classifier

Training Labels

Dataset: ETH-80, by B. Leibe Slide credit: D. Hoiem, L. Lazebnik
Training & Testing a Classifier

Training

- Training Images
- Image Features
- Training
- Learned Classifier
- Prediction

Testing

- Test Image
- Image Features
- Learned Classifier
- Prediction

Dataset: ETH-80, by B. Leibe
Slide credit: D. Hoiem, L. Lazebnik
Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network
- Deep Neural Network
- ...

First: Nearest Neighbor (NN) Classifier

• Train
 • Remember all training images and their labels

• Predict
 • Find the closest (most similar) training image
 • Predict its label as the true label
CIFAR-10 and NN results

Example dataset: **CIFAR-10**

- 10 labels
- **50,000** training images
- **10,000** test images.

![Image of CIFAR-10 dataset examples](image)
CIFAR-10 and NN results

Example dataset: CIFAR-10
10 labels
50,000 training images
10,000 test images.

For every test image (first column), examples of nearest neighbors in rows.
k-nearest neighbor

- Find the k closest points from training data
- Take **majority vote** from K closest points
What does this look like?
What does this look like?
How to Define Distance Between Images

L1 distance:

\[
d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|
\]

Where \(I_1 \) denotes image 1, and \(p \) denotes each pixel.

<table>
<thead>
<tr>
<th>test image</th>
<th>training image</th>
<th>pixel-wise absolute value differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 32 10 18</td>
<td>10 20 24 17</td>
<td>46 12 14 1</td>
</tr>
<tr>
<td>90 23 128 133</td>
<td>8 10 89 100</td>
<td>82 13 39 33</td>
</tr>
<tr>
<td>24 26 178 200</td>
<td>12 16 178 170</td>
<td>12 10 0 30</td>
</tr>
<tr>
<td>2 0 255 220</td>
<td>4 32 233 112</td>
<td>2 32 22 108</td>
</tr>
</tbody>
</table>

\[= 456\]
Choice of distance metric

- Hyperparameter

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I^p_1 - I^p_2| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I^p_1 - I^p_2)^2} \]

- Two most commonly used special cases of p-norm

\[\|x\|_p = (|x_1|^p + \cdots + |x_n|^p)^{\frac{1}{p}} \quad p \geq 1, x \in \mathbb{R}^n \]
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2} \]

Hyperparameters

• What is the **best distance** to use?
• What is the **best value of k** to use?

• These are **hyperparameters**: choices about the algorithm that we set rather than learn

• How do we set them?
 • One option: try them all and see what works best
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your Dataset
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Idea #2: Split data into **train** and **test**, choose hyperparameters that work best on test data
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train test
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: $K = 1$ always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

<table>
<thead>
<tr>
<th>train</th>
<th>test</th>
</tr>
</thead>
</table>

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

Better!

<table>
<thead>
<tr>
<th>train</th>
<th>validation</th>
<th>test</th>
</tr>
</thead>
</table>
Setting Hyperparameters

Idea #4: Cross-Validation: Split data into *folds*, try each fold as validation and average the results.

<table>
<thead>
<tr>
<th>fold 1</th>
<th>fold 2</th>
<th>fold 3</th>
<th>fold 4</th>
<th>fold 5</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td>test</td>
</tr>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td>test</td>
</tr>
</tbody>
</table>

Useful for small datasets, but not used too frequently in deep learning.

Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/
Hyperparameter Tuning

Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation.

(Seems that $k \approx 7$ works best for this data)
Recap: How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test

- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability
kNN -- Complexity and Storage

- N training images, M test images
- Training: $O(1)$
- Testing: $O(MN)$
- We often need the opposite:
 - Slow training is ok
 - Fast testing is necessary
k-Nearest Neighbors: Summary

- In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

- The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples

- Distance metric and K are **hyperparameters**

- Choose hyperparameters using the **validation set**; only run on the test set once at the very end!
Problems with KNN: Distance Metrics

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive

original shifted messed up darkened

(all 3 images have same L2 distance to the one on the left)
Problems with KNN: The Curse of Dimensionality

• As the number of dimensions increases, the same amount of data becomes more sparse.
• Amount of data we need ends up being exponential in the number of dimensions

Animation from https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html
Linear Classifiers

Neural Network

Linear classifiers
Linear Classification vs. Nearest Neighbors

• Nearest Neighbors
 • Store every image
 • Find nearest neighbors at test time, and assign same class
Linear Classification vs. Nearest Neighbors

- **Nearest Neighbors**
 - Store every image
 - Find nearest neighbors at test time, and assign same class

- **Linear Classifier**
 - Store hyperplanes that best separate different classes
 - We can compute continuous class score by calculating (signed) distance from hyperplane

We can interpret this as a linear "score function" for each class.
Score functions

class scores
Parametric Approach

\[
f(\mathbf{x}, \mathbf{W})
\]

Image parameters

[32x32x3] = 3072
array of numbers 0...1
(3072 numbers total)

10 numbers, indicating class scores

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/
Parametric Approach: Linear Classifier

\[f(x, W) = Wx \]

10x1 \(\rightarrow \) 10x3072 \(\rightarrow \) 3072x1

[32x32x3] = 3072
document of numbers 0...1
	parameters, or “weights”

10 numbers, indicating class scores

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/
Parametric Approach: Linear Classifier

$$f(x, W) = Wx$$

10×3072 parameters, or "weights"

3072×1 10 numbers, indicating class scores

10×1 array of numbers $0...1$

$[32 \times 32 \times 3] = 3072$
Linear Classifier

define a score function

\[f(x_i, W, b) = W x_i + b \]

data (image)

class scores

“weights”

“bias vector”

“parameters”

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/
Interpretation: Algebraic

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/
Interpretation: Geometric

• Parameters define a hyperplane for each class:

\[f(x_i, W, b) = Wx_i + b \]

• We can think of each class score as defining a distribution that is proportional to distance from the corresponding hyperplane
Interpretation: Template matching

- We can think of the rows in W as templates for each class

Rows of W in $f(x_i, W, b) = Wx_i + b$
Hard Cases for a Linear Classifier

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
$1 \leq \text{L2 norm} \leq 2$

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else
Linear Classifier: Three Viewpoints

Algebraic Viewpoint

\[f(x, W) = Wx \]

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space
So far: Defined a (linear) score function $f(x, W) = Wx + b$

Example class scores for 3 images for some W:

<table>
<thead>
<tr>
<th></th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>-3.45</td>
<td>-0.51</td>
<td>3.42</td>
</tr>
<tr>
<td>automobile</td>
<td>-8.87</td>
<td>6.04</td>
<td>4.64</td>
</tr>
<tr>
<td>bird</td>
<td>0.09</td>
<td>5.31</td>
<td>2.65</td>
</tr>
<tr>
<td>cat</td>
<td>2.9</td>
<td>-4.22</td>
<td>5.1</td>
</tr>
<tr>
<td>deer</td>
<td>4.48</td>
<td>-4.19</td>
<td>2.64</td>
</tr>
<tr>
<td>dog</td>
<td>8.02</td>
<td>3.58</td>
<td>5.55</td>
</tr>
<tr>
<td>frog</td>
<td>3.78</td>
<td>4.49</td>
<td>-4.34</td>
</tr>
<tr>
<td>horse</td>
<td>1.06</td>
<td>-4.37</td>
<td>-1.5</td>
</tr>
<tr>
<td>ship</td>
<td>-0.36</td>
<td>-2.09</td>
<td>-4.79</td>
</tr>
<tr>
<td>truck</td>
<td>-0.72</td>
<td>-2.93</td>
<td>6.14</td>
</tr>
</tbody>
</table>

How can we tell whether this W is good or bad?
Recap

• Learning methods
 • k-Nearest Neighbors
 • Linear classification

• Classifier outputs a **score function** giving a score to each class
• How do we define how good a classifier is based on the training data? (Spoiler: define a *loss function*)
Linear classification

Output scores

<table>
<thead>
<tr>
<th></th>
<th>Score 1</th>
<th>Score 2</th>
<th>Score 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplane</td>
<td>-3.45</td>
<td>-0.51</td>
<td>3.42</td>
</tr>
<tr>
<td>automobile</td>
<td>-8.87</td>
<td>6.04</td>
<td>4.64</td>
</tr>
<tr>
<td>bird</td>
<td>0.09</td>
<td>5.31</td>
<td>2.65</td>
</tr>
<tr>
<td>cat</td>
<td>2.9</td>
<td>-4.22</td>
<td>5.1</td>
</tr>
<tr>
<td>deer</td>
<td>4.48</td>
<td>-4.19</td>
<td>2.64</td>
</tr>
<tr>
<td>dog</td>
<td>8.02</td>
<td>3.58</td>
<td>5.55</td>
</tr>
<tr>
<td>frog</td>
<td>3.78</td>
<td>4.49</td>
<td>-4.34</td>
</tr>
<tr>
<td>horse</td>
<td>1.06</td>
<td>-4.37</td>
<td>-1.5</td>
</tr>
<tr>
<td>ship</td>
<td>-0.36</td>
<td>-2.09</td>
<td>-4.79</td>
</tr>
<tr>
<td>truck</td>
<td>-0.72</td>
<td>-2.93</td>
<td>6.14</td>
</tr>
</tbody>
</table>

TODO:

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)
Loss functions

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W) = Wx$ are:

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>

A **loss function** tells how good our current classifier is.

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^{N}$$

Where x_i is image and y_i is (integer) label.

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_i L_i(f(x_i, W), y_i)$$
Loss function, cost/objective function

• Given ground truth labels \((y_i) \), scores \(f(x_i, W) \)
 • how unhappy are we with the scores?

• Loss function or objective/cost function measures unhappiness

• During training, **want to find the parameters** \(W \) **that minimize the loss function**
Simpler example: binary classification

- Two classes (e.g., “cat” and “not cat”)
 - AKA “positive” and “negative” classes
Linear classifiers

• Find linear function (hyperplane) to separate positive and negative examples

\[x_i, \text{positive} : \quad x_i \cdot w + b \geq 0 \]
\[x_i, \text{negative} : \quad x_i \cdot w + b < 0 \]

Which hyperplane is best? We need a loss function to decide
What is a good loss function?

• One possibility: Number of misclassified examples
 • Problems: discrete, can’t break ties
 • We want the loss to lead to *good generalization*
 • We want the loss to work for more than 2 classes
Softmax classifier

- Interpret Scores as unnormalized log probabilities of classes

Squashes values into *probabilities* ranging from 0 to 1

Example with three classes:

\[
[1, -2, 0] \rightarrow [e^1, e^{-2}, e^0] = [2.71, 0.14, 1] \rightarrow [0.7, 0.04, 0.26]
\]
Softmax classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Cross-entropy loss

\[f(x_i, W) = W x_i \] (score function)
Cross-entropy loss

We call L_i cross-entropy loss

$$L_i = - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right)$$

f_{y_i} : score of correct class
Cross-entropy loss

\[f(x_i, W) = WX_i \] (score function)

\[L_i = -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right) \]

\[L_i = -f_{y_i} + \log \sum_j e^{f_j} \]

We call \(L_i \) cross-entropy loss

i.e. we’re minimizing the negative log likelihood.
Losses

• Cross-entropy loss is just one possible loss function
 • One nice property is that it reinterprets scores as probabilities, which have a natural meaning

• SVM (max-margin) loss functions also used to be popular
 • But currently, cross-entropy is the most common classification loss
Summary

- Have score function and loss function
 - Currently, score function is based on linear classifier
 - Next, will generalize to convolutional neural networks
- Find W and b to minimize loss

$$L = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{f_{y_i}}}{\sum_{j} e^{f_{j}}} \right) + \lambda \sum_{k} \sum_{l} W_{k,l}^2$$

- Average of cross-entropy loss over all training examples
- Regularization term (will talk about this later)
Questions?