Quiz 6 (on Canvas)

Ends at 3:07pm

CS5670: Computer Vision

Introduction to Recognition

Announcements

- Project 4 due in one week, Tuesday 4/20, by 7pm
 Code and output both due at the same time
- Watch out for poll on take-home final timing

• Questions during lecture? Go to sli.do and enter code cs5670

Where we go from here

- What we know: Geometry
 - What is the shape of the world?
 - How does that shape appear in images?
 - How can we infer that shape from one or more images?
- What's next: Recognition
 - What are we looking at?

Next few slides adapted from Li, Fergus, & Torralba's excellent <u>short course</u> on category and object recognition

• Verification: is that a lamp?

- Verification: is that a lamp?
- Detection: where are the people?

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization
- Activity / Event Recognition

Object recognition: Is it really so hard?

Find the chair in this image

Output of normalized correlation

This is a chair

Object recognition: Is it really so hard?

Find the chair in this image

Pretty much garbage: Simple template matching is not going to do the trick

Object recognition: Is it really so hard?

Find the chair in this image

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why not use SIFT matching for everything?

• Works well for object *instances* (or distinctive images such as logos)

• Not great for generic object categories

And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Applications: Photography

Applications: Shutter-free Photography

Take Your Best Selfie Automatically, with Photobooth on Pixel 3

https://ai.googleblog.com/2019/04/take-your-best-selfie-automatically.html (Also features "kiss detection")

Applications: Assisted / autonomous driving

Applications: Photo organization

Source: Google Photos

Applications: medical imaging

Dermatologist-level classification of skin cancer

https://cs.stanford.edu/people/esteva/nature/

Why is recognition hard?

Svetlana Lazebnik

Challenge: lots of potential classes

Challenge: variable viewpoint

Michelangelo 1475-1564

Challenge: variable illumination

image credit: J. Koenderink

Challenge: scale

Challenge: deformation

Challenge: Occlusion

Magritte, 1957

Challenge: background clutter

Kilmeny Niland. 1995

Challenge: intra-class variations

Svetlana Lazebnik

- What worked in 2011 (pre-deep-learning era in computer vision)
 - Optical character recognition
 - Face detection
 - Instance-level recognition (what logo is this?)
 - Pedestrian detection (sort of)
 - ... that's about it

- What works now, post-2012 (deep learning era)
 - Robust object classification across thousands of object categories (outperforming humans)

"Spotted salamander"

- What works now, post-2012 (deep learning era)
 - Face recognition at scale

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff fschroff@google.com Google Inc.

FaceNet, CVPR 2015

Dmitry Kalenichenko dkalenichenko@google.com Google Inc.

James Philbin jphilbin@google.com Google Inc.

Figure 1. Illumination and Pose invariance. Pose and illumination have been a long standing problem in face recognition. This figure shows the output distances of FaceNet between pairs of faces of the same and a different person in different pose and illumination combinations. A distance of 0.0 means the faces are identical, 4.0 corresponds to the opposite spectrum, two different identities. You can see that a threshold of 1.1 would classify every pair correctly.

Account '

The Secretive Company That Might End Privacy as We Know It

A little-known start-up helps law enforcement match photos of unknown people to their online images and "might lead to a dystopian future or something," a backer says.

https://www.nytimes.com/2020/01/18/technology/clearview-privacy-facial-recognition.html

- What works now, post-2012 (deep learning era)
 - High-quality face synthesis (but not yet for completely general scenes)

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA) <u>http://stylegan.xyz/paper</u>

These people are not real – they were produced by our generator that allows control over different aspects of the image.

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features
- Data
 - More is always better (as long as it is good data)
 - Annotation is the hard part

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features
- Data
 - More is always better (as long as it is good data)
 - Annotation is the hard part

24 Hrs in Photos

Flickr Photos From 1 Day in 2011

https://www.kesselskramer.com/project/24-hrs-in-photos/

Data Sets

- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories
- ImageNet
 - Huge, Crowdsourced, Hierarchical, *Iconic* objects
- SUN Scene Database, Places
 - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
 - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
 - Crowdsourced, materials
- Microsoft COCO
 - Crowdsourced, large-scale objects

Data Sets

- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories
- ImageNet
 - Huge, Crowdsourced, Hierarchical, *Iconic* objects
- SUN Scene Database, Places
 - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
 - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
 - Crowdsourced, materials
- Microsoft COCO
 - Crowdsourced, large-scale objects

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- 20 object categories (aeroplane to TV/monitor)
- Three challenges:
 - Classification challenge (is there an X in this image?)
 - Detection challenge (draw a box around every X)
 - Segmentation challenge (which class is each pixel?)

Large Scale Visual Recognition Challenge (ILSVRC) 2010-2017

20 object classes22,591 images1000 object classes1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

bottle

car

ILSVRC

quail

partridge ...

cock

ruffed grouse

pill bottle beer bottle wine bottle water bottle pop bottle . . .

flamingo

race car wagon

cab

. . .

bottles

cars

birds

Variety of object classes in ILSVRC

What's Still Hard?

• Few shot learning

- How do we generalize from only a small number of examples?
- Fine-grain classification
 - How do we distinguish between more subtle class differences?

Animal->Bird->Oriole...

Baltimore Oriole

Hooded Oriole

Scott Oriole

What's Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?

Questions?