Quiz 6 (on Canvas)

Ends at 3:07pm
Announcements

• Project 4 due in one week, Tuesday 4/20, by 7pm
 – Code and output both due at the same time

• Watch out for poll on take-home final timing

• Questions during lecture? Go to sli.do and enter code cs5670
Where we go from here

• What we know: Geometry
 • What is the shape of the world?
 • How does that shape appear in images?
 • How can we infer that shape from one or more images?

• What’s next: Recognition
 • What are we looking at?
What is “Recognition”?

Next few slides adapted from Li, Fergus, & Torralba’s excellent short course on category and object recognition
What is “Recognition”?

- Verification: is that a lamp?
What is “Recognition”?

- Verification: is that a lamp?
- Detection: where are the people?
What is “Recognition”?

• Verification: is that a lamp?
• Detection: where are the people?
• Identification: is that Potala Palace?
What is “Recognition”?

• Verification: is that a lamp?
• Detection: where are the people?
• Identification: is that Potala Palace?
• Object categorization
What is “Recognition”?

• Verification: is that a lamp?
• Detection: where are the people?
• Identification: is that Potala Palace?
• Object categorization
• Scene and context categorization
What is “Recognition”?

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization
- Activity / Event Recognition
Object recognition: Is it really so hard?

Find the chair in this image

This is a chair

Output of normalized correlation
Object recognition: Is it really so hard?

Find the chair in this image

Pretty much garbage:
Simple template matching is not going to do the trick
Object recognition: Is it really so hard?

A “popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts.” Nivatia & Binford, 1977.
Why not use SIFT matching for everything?

• Works well for object *instances* (or distinctive images such as logos)

• Not great for generic object *categories*
And it can get a lot harder

Applications: Photography
Applications: Shutter-free Photography

Take Your Best Selfie Automatically, with Photobooth on Pixel 3

(Also features “kiss detection”)
Applications: Assisted / autonomous driving
Applications: Photo organization

Source: Google Photos
Applications: medical imaging

Dermatologist-level classification of skin cancer

https://cs.stanford.edu/people/esteva/nature/
Why is recognition hard?

Variability: Camera position, Illumination, Shape, etc...
Challenge: lots of potential classes

How many object categories are there?

~10,000 to 30,000
Challenge: variable viewpoint

Michelangelo 1475-1564
Challenge: variable illumination

image credit: J. Koenderink
Challenge: scale

and small things from Apple.
(Actual size)
Challenge: deformation
Challenge: Occlusion

Magritte, 1957
Challenge: background clutter

Kilmeny Niland.
1995
Challenge: intra-class variations
A brief history of image recognition

- What worked in 2011 (pre-deep-learning era in computer vision)
 - Optical character recognition
 - Face detection
 - Instance-level recognition (what logo is this?)
 - Pedestrian detection (sort of)
 - ... that’s about it
A brief history of image recognition

• What works now, post-2012 (deep learning era)
 • Robust object classification across thousands of object categories (outperforming humans)

“Spotted salamander”
A brief history of image recognition

- What works now, post-2012 (deep learning era)
 - Face recognition at scale

A brief history of image recognition

• What works now, post-2012 (deep learning era)
 • High-quality face synthesis (but not yet for completely general scenes)

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
http://stylegan.xyz/paper

These people are not real – they were produced by our generator that allows control over different aspects of the image.
What Matters in Recognition?

• Learning Techniques
 • E.g. choice of classifier or inference method

• Representation
 • Low level: SIFT, HoG, GIST, edges
 • Mid level: Bag of words, sliding window, deformable model
 • High level: Contextual dependence
 • Deep learned features

• Data
 • More is always better (as long as it is good data)
 • Annotation is the hard part
What Matters in Recognition?

• Learning Techniques
 • E.g. choice of classifier or inference method

• Representation
 • Low level: SIFT, HoG, GIST, edges
 • Mid level: Bag of words, sliding window, deformable model
 • High level: Contextual dependence
 • Deep learned features

• Data
 • More is always better (as long as it is good data)
 • Annotation is the hard part
24 Hrs in Photos

Flickr Photos From 1 Day in 2011

https://www.kesselskramer.com/project/24-hrs-in-photos/
Data Sets

- **PASCAL VOC**
 - *Not* Crowdsourced, bounding boxes, 20 categories
- **ImageNet**
 - Huge, Crowdsourced, Hierarchical, *Iconic* objects
- **SUN Scene Database, Places**
 - *Not* Crowdsourced, 397 (or 720) scene categories
- **LabelMe (Overlaps with SUN)**
 - Sort of Crowdsourced, Segmentations, Open ended
- **SUN *Attribute* database (Overlaps with SUN)**
 - Crowdsourced, 102 attributes for every scene
- **OpenSurfaces**
 - Crowdsourced, materials
- **Microsoft COCO**
 - Crowdsourced, large-scale objects
Data Sets

- **PASCAL VOC**
 - *Not* Crowdsourced, bounding boxes, 20 categories
- **ImageNet**
 - *Huge, Crowdsourced, Hierarchical, Iconic objects*
- **SUN Scene Database, Places**
 - *Not* Crowdsourced, 397 (or 720) scene categories
- **LabelMe (Overlaps with SUN)**
 - Sort of Crowdsourced, Segmentations, Open ended
- **SUN Attribute database (Overlaps with SUN)**
 - Crowdsourced, 102 attributes for every scene
- **OpenSurfaces**
 - Crowdsourced, materials
- **Microsoft COCO**
 - Crowdsourced, large-scale objects
The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

• 20 object categories (aeroplane to TV/monitor)

• Three challenges:
 • Classification challenge (is there an X in this image?)
 • Detection challenge (draw a box around every X)
 • Segmentation challenge (which class is each pixel?)
Large Scale Visual Recognition Challenge (ILSVRC)

ImageNet

20 object classes 22,591 images
1000 object classes 1,431,167 images

Dalmatian

Variety of object classes in ILSVRC

PASCAL

birds

bird

bottles

bottle

cars

car

ILSVRC

flamingo cock ruffed grouse quail partridge

pill bottle beer bottle wine bottle water bottle pop bottle
Variety of object classes in ILSVRC
What’s Still Hard?

• Few shot learning
 • How do we generalize from only a small number of examples?

• Fine-grain classification
 • How do we distinguish between more subtle class differences?
What’s Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?
Questions?