
Feature matching

CS5670: Computer Vision

Reading

• Szeliski (1st edition): 4.1

Announcements

• Project 1 artifact due tonight at 11:59pm on CMSX

• Project 2 out today, due Friday, March 12 at 7pm

– To be done in groups of two – will host breakout sessions at the

end of class (last 10 minutes)

• A (slightly shorter) quiz this Wednesday, due 7 minutes

after the start of class

Project 2 Demo

Alternate Harris score

• For Project 2, you will use an alternate definition of the

Harris score:

Quiz

Quiz

Local features: main components

1) Detection: Identify the

interest points

2) Description: Extract

vector feature descriptor

surrounding each interest

point.

3) Matching: Determine

correspondence between

descriptors in two views

],,[)1()1(

11 dxx =x

],,[)2()2(

12 dxx =x

Kristen Grauman

Feature descriptors

We know how to detect good points

Next question: How to match them?

Answer: Come up with a descriptor for each

point, find similar descriptors between the

two images

?

Take 40x40 square window around

detected feature

– Scale to 1/5 size (using

prefiltering)

– Rotate to horizontal

– Sample 8x8 square window

centered at feature

– Intensity normalize the window by

subtracting the mean, dividing by

the standard deviation in the

window (why?)
CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown

Detections at multiple scales

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint (up to about 60 degree out of plane rotation)

– Can handle significant changes in illumination (sometimes even day vs. night (below))

– Pretty fast—hard to make real-time, but can run in <1s for moderate image sizes

– Lots of code available

Questions?

Summary

• Keypoint detection: repeatable and

distinctive

– Corners, blobs, stable regions

– Harris, DoG

• Descriptors: robust and selective

– spatial histograms of orientation

– SIFT and variants are typically good for

stitching and recognition

– Can learn descriptors (and detectors)

Which features match?

Feature matching

Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance

Feature distance

How to define the difference between two features f1, f2?

– Simple approach: L2 distance, || f1 - f2 ||

– can give small distances for ambiguous (incorrect) matches

I1 I2

f1 f2

f1 f2f2
'

Feature distance

How to define the difference between two features f1, f2?
• Better approach: ratio distance = || f1 - f2 || / || f1 - f2’ ||

• f2 is the best SSD match to f1 in I2
• f2’ is the 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2

• Does the SSD vs “ratio distance” change the best match to

a given feature in image 1?

Feature distance

Feature matching example

58 matches (thresholded by ratio score)

Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with

outliers later

Evaluating the results

How can we measure the performance of a feature matcher?

50

75

200

feature distance

True/false positives

The distance threshold affects performance

– True positives = # of detected matches that survive the threshold that are correct

– False positives = # of detected matches that survive the threshold that are incorrect

50

75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

Example

• Suppose our matcher computes 1,000 matches between

two images

– 800 are correct matches, 200 are incorrect (according to an

oracle that gives us ground truth matches)

– A given threshold (e.g., ratio distance = 0.6) gives us 600 correct

matches and 100 incorrect matches that survive the threshold

– True positive rate = 600 / 800 = ¾

– False positive rate = 100 / 200 = ½

0.7

Evaluating the results

0 1

1

false positive rate

true

positive

rate

0.1

How can we measure the performance of a feature matcher?

recall

1 - specificity

true positives surviving threshold

total correct matches (positives)

false positives surviving threshold

total incorrect matches (negatives)

0.7

0 1

1

false positive rate

true

positive

rate

true positives surviving threshold

total correct matches (positives)

0.1

false positives surviving threshold

total incorrect matches (negatives)

ROC curve (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

recall

1 - specificity

Single number: Area

Under the Curve (AUC)

E.g. AUC = 0.87

1 is the best

Evaluating the results

ROC curves – summary

• By thresholding the score at different thresholds, we can

generate sets of matches with different true/false positive

rates

• ROC curve is generated by computing rates at a set of

threshold values swept through the full range of possible

threshold

• Area under the ROC curve (AUC) summarizes the

performance of a feature pipeline (higher AUC is better)

More on feature detection/description

http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.cs.ubc.ca/~lowe/keypoints/

http://www.vision.ee.ethz.ch/~surf/

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/

Lots of applications

Features are used for:

– Image alignment (e.g., mosaics)

– 3D reconstruction

– Motion tracking

– Object recognition

– Indexing and database retrieval

– Robot navigation

– … other

Object recognition (David Lowe)

3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and

points

Augmented Reality

Live demo?

Questions?

