
Feature matching

CS5670: Computer Vision



Reading

• Szeliski (1st edition): 4.1



Announcements

• Project 1 artifact due tonight at 11:59pm on CMSX

• Project 2 out today, due Friday, March 12 at 7pm

– To be done in groups of two – will host breakout sessions at the 

end of class (last 10 minutes)

• A (slightly shorter) quiz this Wednesday, due 7 minutes 

after the start of class



Project 2 Demo



Alternate Harris score

• For Project 2, you will use an alternate definition of the 

Harris score:



Quiz



Quiz



Local features: main components

1) Detection: Identify the 

interest points

2) Description: Extract 

vector feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views
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Feature descriptors

We know how to detect good points

Next question: How to match them?

Answer: Come up with a descriptor for each 

point, find similar descriptors between the 

two images

?



Take 40x40 square window around 

detected feature

– Scale to 1/5 size (using 

prefiltering)

– Rotate to horizontal

– Sample 8x8 square window 

centered at feature

– Intensity normalize the window by 

subtracting the mean, dividing by 

the standard deviation in the 

window (why?)
CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown



Detections at multiple scales



SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint (up to about 60 degree out of plane rotation)

– Can handle significant changes in illumination (sometimes even day vs. night (below))

– Pretty fast—hard to make real-time, but can run in <1s for moderate image sizes

– Lots of code available



Questions?



Summary

• Keypoint detection: repeatable and 

distinctive

– Corners, blobs, stable regions

– Harris, DoG

• Descriptors: robust and selective

– spatial histograms of orientation

– SIFT and variants are typically good for 

stitching and recognition

– Can learn descriptors (and detectors)



Which features match?



Feature matching

Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance



Feature distance

How to define the difference between two features f1, f2?

– Simple approach: L2 distance, || f1 - f2 || 

– can give small distances for ambiguous (incorrect) matches 

I1 I2

f1 f2



f1 f2f2
'

Feature distance

How to define the difference between two features f1, f2?
• Better approach:  ratio distance = || f1 - f2 || / || f1 - f2’ || 

• f2 is the best SSD match to f1 in I2
• f2’ is the 2nd best SSD match to f1 in I2
• gives large values for ambiguous matches

I1 I2



• Does the SSD vs “ratio distance” change the best match to 

a given feature in image 1?

Feature distance



Feature matching example

58 matches (thresholded by ratio score)



Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with 

outliers later



Evaluating the results

How can we measure the performance of a feature matcher?
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200

feature distance



True/false positives

The distance threshold affects performance

– True positives = # of detected matches that survive the threshold that are correct

– False positives = # of detected matches that survive the threshold that are incorrect

50

75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?



Example

• Suppose our matcher computes 1,000 matches between 

two images

– 800 are correct matches, 200 are incorrect (according to an 

oracle that gives us ground truth matches)

– A given threshold (e.g., ratio distance = 0.6) gives us 600 correct 

matches and 100 incorrect matches that survive the threshold

– True positive rate = 600 / 800 = ¾

– False positive rate = 100 / 200 = ½
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Evaluating the results
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How can we measure the performance of a feature matcher?

recall

1 - specificity

# true positives surviving threshold

# total correct matches (positives)

# false positives surviving threshold

# total incorrect matches (negatives)
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# total correct matches (positives)
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# false positives surviving threshold

# total incorrect matches (negatives)

ROC curve  (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

recall

1 - specificity

Single number: Area 

Under the Curve (AUC)

E.g. AUC = 0.87

1 is the best

Evaluating the results



ROC curves – summary

• By thresholding the score at different thresholds, we can 

generate sets of matches with different true/false positive 

rates

• ROC curve is generated by computing rates at a set of 

threshold values swept through the full range of possible 

threshold

• Area under the ROC curve (AUC) summarizes the 

performance of a feature pipeline (higher AUC is better)



More on feature detection/description

http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.cs.ubc.ca/~lowe/keypoints/

http://www.vision.ee.ethz.ch/~surf/

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/


Lots of applications

Features are used for:

– Image alignment (e.g., mosaics)

– 3D reconstruction

– Motion tracking

– Object recognition

– Indexing and database retrieval

– Robot navigation

– … other



Object recognition (David Lowe)



3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and 

points



Augmented Reality



Live demo?



Questions?


