CS5670: Computer Vision

Feature invariance
Reading

• Szeliski (first edition): 4.1
Announcements

• Project 1 code due tomorrow at 11:59pm
• Project 1 artifact due Monday, 3/1, at 11:59pm
• Project 2 (Feature Detection & Matching) will be out next week
 – To be done in groups of 2
Panorama stitching

Panorama captured by Perseverence Rover, Feb. 20, 2021

https://www.space.com/nasa-perseverance-rover-first-panorama-mars
Local features: main components

1) **Detection**: Identify the interest points

2) **Description**: Extract vector feature descriptor surrounding each interest point.

3) **Matching**: Determine correspondence between descriptors in two views
Harris features (in red)
Image transformations

- Geometric

 Rotation

 Scale

- Photometric
 Intensity change
Invariance and equivariance

• We want corner locations to be \textit{invariant} to photometric transformations and \textit{equivariant} to geometric transformations
 – \textbf{Invariance}: image is transformed and corner locations do not change
 – \textbf{Equivariance}: if we have two transformed versions of the same image, features should be detected in corresponding locations
 – (Sometimes “invariant” and “equivariant” are both referred to as “invariant”)
 – (Sometimes “equivariant” is called “covariant”)
Harris detector invariance properties: image translation

- Derivatives and window function are equivariant

Corner location is equivariant w.r.t. translation
Harris detector invariance properties: image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is equivariant w.r.t. image rotation
Harris detector invariance properties: Affine intensity change

- Only derivatives are used \(\rightarrow \) invariance to intensity shift \(I \rightarrow I + b \)
- Intensity scaling: \(I \rightarrow a \ I \)

Partially invariant to affine intensity change
Harris detector invariance properties: scaling

Neither invariant nor equivariant to scaling
Scale invariant detection

Suppose you’re looking for corners

Key idea: find scale that gives local maximum of f
 – in both position and scale
 – One definition of f: the Harris operator
Automatic scale selection

Lindeberg et al., 1996
Automatic scale selection
Automatic scale selection

$F_i \text{ and responses in increasing scale}$

$\text{Scale (signal size)}$

$f(I_{\text{local}}(x, \sigma))$
Automatic scale selection
Automatic scale selection
Automatic scale selection
Automatic scale selection

Firing rate responses in the scale space (signature)

\[f(I_{k\ldots n}(x,\sigma)) \]

\[f(I_{k\ldots n}(x',\sigma')) \]
Automatic scale selection

Normalize: rescale to fixed size
Implementation

• Instead of computing f for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid

(sometimes need to create in-between levels, e.g. a $\frac{3}{4}$-size image)
Feature extraction: Corners and blobs
Another common definition of f

- The Laplacian of Gaussian (LoG)

\[
\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}
\]

(very similar to a Difference of Gaussians (DoG) – i.e. a Gaussian minus a slightly smaller Gaussian)
Laplacian of Gaussian

• “Blob” detector

• Find maxima and minima of LoG operator in space and scale
Scale selection

- At what scale does the Laplacian achieve a maximum response for a binary circle of radius \(r \)?
Characteristic scale

• We define the characteristic scale as the scale that produces peak of Laplacian response

Find local maxima in 3D position-scale space

\[L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^2 \]

\[\Rightarrow \text{List of } (x, y, s) \]

K. Grauman, B. Leibe
Scale-space blob detector: Example
Scale-space blob detector: Example

sigma = 11.9912
Scale-space blob detector: Example
Scale Invariant Detection

- Functions for determining scale

Kernels:

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]

(Laplacian)

\[\text{DoG} = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)

where Gaussian

\[G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]

Note: The LoG and DoG operators are both rotation equivariant
Questions?
Feature descriptors

We know how to detect good points
Next question: **How to match them?**

Answer: Come up with a *descriptor* for each point, find similar descriptors between the two images