Announcements

• Project 1 (Hybrid Images) is now on the course webpage (see *Projects* link)
 – Due Thursday, Feb 25, by 11:59pm on CMS
 – Artifact due Monday, March 1, by 11:59pm
 – Project to be done individually
 – Voting system for favorite artifacts (with small amount of extra credit)
 – Skeleton code available on Github Classroom – instructions for setting up Python environment on the project webpage
Announcements

• Quizzes to be given through Canvas or Gradescope
• Still working out the details
Project 1: Hybrid Images
Project 1 Demo
Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels
Origin of edges

• Edges are caused by a variety of factors
Images as functions...

• Edges look like steep cliffs
Characterizing edges

- An edge is a place of *rapid change* in the image intensity function

Source: L. Lazebnik
How can we differentiate a digital image $F[x,y]$?

- Option 1: reconstruct a continuous image, f, then compute the derivative
- Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x, y] \approx F[x + 1, y] - F[x, y]$$

How would you implement this as a linear filter?
The gradient points in the direction of most rapid increase in intensity

The edge strength is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz
Image gradient

Source: L. Lazebnik
Effects of noise

Noisy input image

$f(x)$

Where is the edge?

$\frac{d}{dx}f(x)$

Source: S. Seitz
Solution: smooth first

To find edges, look for peaks in \(\frac{d}{dx} (f * h) \)

Source: S. Seitz
Differentiation is convolution, and convolution is associative:

\[\frac{d}{dx} (f \ast h) = f \ast \frac{d}{dx} h \]

This saves us one operation: \(f \)
The 1D Gaussian and its derivatives

\[G_\sigma(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} \]

\[G'_\sigma(x) = \frac{d}{dx} G_\sigma(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma} \right) G_\sigma(x) \]
2D edge detection filters

\[h_\sigma(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{2\sigma^2}} \]

Gaussian

\[\frac{\partial}{\partial x} h_\sigma(u, v) \]

derivative of Gaussian \((x)\)
Derivative of Gaussian filter
The Sobel operator

• Common approximation of derivative of Gaussian

\[
\begin{array}{ccc}
\frac{1}{8} & & \\
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1 \\
\end{array}
\quad s_x
\]

\[
\begin{array}{ccc}
\frac{1}{8} & & \\
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{array}
\quad s_y
\]

• The standard definition of the Sobel operator omits the 1/8 term
 – doesn’t make a difference for edge detection
 – the 1/8 term is needed to get the right gradient magnitude
Sobel operator: example

Example

original image

Demo: http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Image credit: Joseph Redmon
Finding edges

smoothed gradient magnitude
Finding edges

thresholding

where is the edge?
Get Orientation at Each Pixel

- Get orientation (below, threshold at minimum gradient magnitude)

\[\theta = \text{atan2}(g_y, g_x) \]
Non-maximum suppression

- Check if pixel is local maximum along gradient direction
 - requires interpolating pixels p and r
Before Non-max Suppression
After Non-max Suppression
Thresholding edges

- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases
 - $R > T$: strong edge
 - $R < T$ but $R > t$: weak edge
 - $R < t$: no edge
- Why two thresholds?
Connecting edges

- Strong edges are edges!
- Weak edges are edges iff they connect to strong
- Look in some neighborhood (usually 8 closest)
Canny edge detector

MATLAB: `edge(image, 'canny')`

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon
Canny edge detector

• Our first computer vision pipeline!
• Still a widely used edge detector in computer vision

• Depends on several parameters:

 - high threshold
 - low threshold
 - σ: width of the Gaussian blur
Canny edge detector

• The choice of σ depends on desired behavior
 – large σ detects “large-scale” edges
 – small σ detects fine edges

Source: S. Seitz
• Properties of scale space (w/ Gaussian smoothing)
 – edge position may shift with increasing scale (σ)
 – two edges may merge with increasing scale
 – an edge may not split into two with increasing scale
Questions?