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Compositing, Part I: Theory 
lames F. Blinn, California Institute o f  Technology 

Associating a pixel’s color with its opacity is the basis for a 

compositing function that is simple, elegant, and general. But there 

are more reasons than mere prettiness to store pixels this way. 

My currently favorite journalistic quote comes from a mag- 
azine called Morph’s Outpost on the Digital Frontier. They 
refer to the operation of avoiding jaggies as “anti-aliening.’’ 
Either this was a typo or they thought of the jaggies as aliens. 
This got me thinking about ways to get rid of these creatures 
-the offspring of 3D geometry and raster displays. 

One of the most important anti-aliening tools in computer 
graphics comes from a generalization of the simple act of 
storing a pixel into a frame buffer. Several people simultane- 
ously discovered the usefulness of this operation, so it goes by 
several names: matting, image compositing, alpha blending, 
overlaying, or lerping. It was most completely codified in a 
paper by Porter and Duff,’ where they call it the “over” oper- 
ator. In this column I’m going to show a new way to derive 
Porter and Duff‘s “over” operator and describe some imple- 
mentation details that I’ve found useful. In a later column I’ll 
go into some of the subtleties of how this operator works with 
integer pixel arithmetic. 

The basic idea 
The simplest form of compositing goes as follows. Say we 

want to overlay a foreground image on some background 
image. The foreground image only covers a part of the back- 
ground; pixels inside the foreground shape will completely 
replace the corresponding background pixels, and pixels 
outside the shape leave the background pixels intact. 

If we want anti-aliened edges, though, things are a bit more 
complicated. Pixels on the edge of the shape only partially cover 
the background pixels. If the shape is to be properly anti- 
aliened, we must blend the foreground color, F, and background 
color, B, according to the fraction a. This value represents the 
percentage of the pixel covered by color F. The standard way to 
calculate this is to find the geometric area covered by F. This 
implements a simple box filter for anti-aliening. More accurate 
filters can be used, but I’ll stick to the box for now. 

Now let’s get down to algebra. F and B are each three- 
element vectors representing the red, green, and blue compo- 
nents of a pixel. Ordinary vector algebra applies. The new 
color in the frame buffer is 

which can be more efficiently calculated as 

You can actually use the value of a for a variety of things. In 
addition to its anti-aliening function, it can represent transpar- 
ent objects or establish a global fade amount. For this reason, 
the a value also goes by various names: coverage amount, 
opacity, or simply alpha. You can also think of it as 1 minus 
thc transparency of the pixel. I’m going to call it opacity for 
now. If it’s 0, the new pixel is transparent and does not affect 
the frame buffer. If it’s 1, the new pixel is opaque and com- 
pletely replaces the current frame buffer color. 

Next, suppose that we want to layer another object on top 
of our image. We just blend in the new object’s color, which 
I’ll call G, on top of our current background image using its 
opacity 0, 

We can keep on plastering stuff on top of our image until we 
are happy. This is the essence of 2-1/2D rendering, also known 
as the painter’s algorithm or temporal priority. 

For most rendering purposes I’ve been able to provide this 
as the only necessary accessing operation into the frame 
buffer. But it’s not quite general enough. 

Associativity 
There is another intriguing generalization here. Both F and 

G have an opacity, but B doesn’t. Does it even mean anything 
to composite into a pixel that already has an opacity? Yes. 
Consider the following scenario. Suppose we have the images 
F and G, but haven’t yet decided what to use for a back- 
ground. Let’s see if we can merge F and G into one image, H, 
that we can store away and later overlay on B to get the same 
result. If we denote the compositing operation with the sym- 
bol &. what we want is 

(B & F) & G = B & (F & G) 

In other words we want to make compositing associative. 
How can we define H = F & G to make this work out? We 

want to calculate a new pixel color H and opacity yin terms of 
colors F and G and their own opacities a and 0. Plug in the 
definitions: 
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(1 - p) ( (1 - CX)B + “F) + PG = (1 -Y)B +YH 

Rearrange the left side to get 

(1 -a)  (1 - P)B + ( (a  (1 - P)F+ PG) = (1 -Y)B +YH 

Since we want this to work for arbitrary backgrounds B, we 
can split this into two equations by equating the B coefficients 
and the non-B coefficients: 

(1 -a)(l- p )  = 1 - y  

An associated color is just a regular color composited onto 
black-that is, if you displayed it directly by itself, you would 
get the correct anti-aliened image. (Is the joke wom out now? 
OK, I’ll use the real word again.) Note that if the opacity equals 
1, an associated color is the same as an unassociated color. 

Using these definitions in the general compositing function 
and doing a bit of algebraic fiddling we get 

a ( l -P )F+PG=yH 
w = (1 - p)F + e 
Y = (1 - P>a+ P The first of these gives us 

y= a+ p-  a p 

The second equation gives us 

H = ( a (1 - P)F+ PG) )/y 

With a little fiddling this turns into 

This gives us a definition for how to composite two colors, 
each of which has its own opacity. 

Let’s play with this a bit. If we composite G over a totally 
opaque color F, what is the result? Plug a = 1 into the above 
and we get 

y= 1 
H =  (1 - P)F+ PG 

In other words, our more general compositing operation boils 
down to the basic one if we assume our background has its 
own opacity value, which happens to be 1. 

Plug in p = 1 with an arbitrary a and we discover 
Now let’s try overlaying a completely opaque color G on F. 

y= 1 
H = G  

independent of a, as we expect. 

Another form of association 
The above definition of H is a bit complicated. Fortunately, 

there is a better way. One of the key insights in the Porter and 
Duff paper is that F shows up in the compositing formula only 
when multiplied by a, and G appears only when multiplied by 
p. Why not simply represent the pixel with the colors already 
premultiplied by their opacity? This representation is usually 
referred to as having the opacity associated with the color. I’ll 
write (for the time being) an associated pixel color with a 
tilde over it. We have 

This is a bit less arithmetic than our earlier definition, but 
what makes it particularly pretty is that we are now doing 
exactly the same arithmetic on the opacity components of a 
pixel as we are doing on the (associated) color components. 
This is simple, elegant, and general. 

More reasons to associate 
There are more reasons to store associated pixel colors than 

mere prettiness of the compositing formula. For one thing, 
some intensity calculation algorithms directly generate associ- 
ated pixel colors. Additionally, we must use associated colors 
for any filtering or interpolation operations. Let’s see why. 

Antialiasing by subsampling 
One typical way to do antialiasing is by subsampling. You 

calculate an image using point sampling at, say, four times 
your final resolution in x and y ,  and then downsample to get 
your final result. There are still aliases, but you have pushed 
them up into higher frequencies. 

How does this work with our scheme here? You can con- 
sider each final pixel as broken into a 4 x 4 grid of subpixel 
cells, each containing a color and an opacity flag. Initialize 
these all to 0. Then, whenever your renderer writes a color to 
a subpixel cell, have it also set the opacity flag to 1. After 
rendering, sum up the 16 opacity flags within the pixel and 
call the result N. The net opacity for the pixel is N/16. Next, 
sum up the 16 color cells in the pixel. The average color of the 
pixel is this sum divided by N, the number of cells colored. 
But the associated color is even more simply calculated as the 
color sum divided by 16, (sum/N) * (N116) = sumll6. You can 
then composite this associated color using the calculated 
opacity, N/16. In other words, the net associated pixel color 
and opacity is the sum of the subpixels divided by 16. 

This works even better if your renderer is scan-line ori- 
ented-that is, it visits each pixel once in order left to right, 
top to bottom. You don’t need individual subpixel cells. Just 
accumulate the color and opacity into a single pixel cell and 
divide by 16. In practice, I implement this with a scan-line 
buffer of pixel cells of length equal to the output picture. 
During scan-line processing, each high-resolution pixel gener- 
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ated simply adds its value to cell number x14. Then, every 
four scan lines, I purge this buffer by dividing its contents by 
16 and compositing it with the background using the associ- 
ated compositing formula. Then I zero the buffer in prepara- 
tion for the next four scan lines. 

Clouds 
The cloud simulation I used for Saturn’s ringsz generates a 

pixel’s brightness as a product of the color of a cloud particle 
times the probability of a particle being both present in the 
pixel and illuminated. We can now recognize this as an associ- 
ated color. The Saturn cloud simulation also generates a 
transparency value based on probabilities of blocking parti- 
cles. The compositing operator I described for the simulation* 
is just the associated composition operator, but I didn’t recog- 
nize it as such at first. Originally, I actually divided the color 
by the opacity before passing it to an unassociated composit- 
ing routine. Live and learn. 

Filtering 
Suppose we want to filter an image that has opacities at 

each pixel. Do we filter the unassociated colors F (this was 
my first thought), or do we filter the associated colors P? To 
find out, consider the following thought experiment. 

Let’s downsample a scan line by a factor of two in the x 
direction by simply averaging successive pairs of pixels. Then 
let’s overlay the result on an opaque background B. We want 
to arrange things so that downsampling and overlaying gener- 
ate the same color as overlaying and downsampling. Let’s 
follow the adventures of a typical pixel pair F (with opacity a) 
and G (with opacity p). Note that F and G are side by side 
here, not on top of each other as in our earlier examples. 

First, try overlaying and then downsampling. Overlay 
(F, a) on B, getting aF + (1 - a)B. Overlay (G, p) on B, get- 
ting a G  + (1 - J3)B. These two pixels are now opaque. Now 
downsample by averaging these results. The color will be 

B -F+-G+- 
2 2  2 
a p 2 - a - p  

As long as you composite first, it actually doesn’t matter if 
you do it associated or unassociated. 

Next, let’s do this in the other order: downsampling first, 
then overlaying. Downsampling the unassociated colors and 
opacity, we get 

color = (F + G)/2; opacity = (a  + p)/2 

Now overlay this on B using the unassociated color composit- 
ing function to get 

B [ 1 - T]B t (?I- = - Ft-G+- a + p  F t G  a + p  a t p  2-a-p 
2 4  4 2 
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-the wrong answer. 

and PG: 
Now let’s do this with associated colors. Downsample aF 

color = (aF + PG)/2; opacity = (a  + p)/2 

Now overlay this on B using the associated compositing func- 
tion to get 

[ 1 - y ) B  + &+pG-a - --F + -G p + - 2 - a - p  B 
2 2  2 

-the right answer. 

tions should operate on arrays of associated pixel colors as 
well as, of course, on the array of opacity values. 

To reiterate, downsampling and, in fact, all filtering opera- 

Interpolation 
Here’s another example. Suppose we are doing Gouraud 

interpolation across a polygon. Each vertex has a color, and 
we do the standard interpolation of vertex colors to get the 
colors inside the polygon. Now, what if the vertices have 
opacities as well? We simply interpolate them in a similar 
manner. But should we interpolate unassociated colors or 
associated colors? (I’ll bet you can guess.) 

Actually, this might seem a little open to interpretation. 
After all, Gouraud interpolation is itself an approximation of 
a more accurate curved-surface-shading function. Who’s to 
say what the correct interpolation amount is? Well, consider 
the following: Interpolation is another form of filtering. Sup- 
pose we wanted to expand an image two times by interpolat- 
ing between each pixel pair. We would again like this to look 
the same if we interpolated and then overlayed on a back- 
ground or if we overlayed first and interpolated second. 

Going back to polygons, we might have a scan line with the 
colors (F, a )  on one end and (G, p) on the other. We want the 
inside colors to look the same when overlayed onto a back- 
ground. We want to interpolate and then overlay over B, and 
we want to make this the same as overlaying and then inter- 
polating. 

just the same as the filtering example, leading us to the con- 
clusion that Gouraud interpolation should also be done on 
associated pixel colors. 

You can do the algebra yourself. Does it look familiar? It’s 

Computer notation 
Each pixel has a red, green, and blue color and an opacity 

a. Since we like associated colors so much, we will represent a 
pixel by the quadruple: 

This looks suspiciously like homogeneous coordinates. I’ve 
tried real hard, but for the life of me I can’t figure out any use 
for this observation. 
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I’m going to start talking about computation, so let’s take a 
moment to switch from the vector algebra mathematical nota- 
tion above to a more C-like computer data structure represen- 
tation. We can represent the pixel color as a four element 
vector F [ i ] , with F [ 0 ] holding the opacity and 
F [ 1 I . . . F [ 3 I holding the colors. Or we could define a pixel 
data structure containing the fields (r, g, b, a). We will as- 
sume the colors to be associated so that F . r = aF,,, and so on. 

The opacity value is more conventionally called alpha, 
which is why I’ve called that field a. I’ll call it alpha from now 
on since we no longer have to worry about having a separate 
Greek letter for the opacity value of different pixels. 

Marching in place 

operation of overlaying a foreground on a background stored 
in a frame buffer. Here, A and from the compositing for- 
mula are the same storage locations: the background B. e is 
the new foreground image, which I’ll call F. The in-place 
formulations of the operation become 

I want to reformulate this a bit to return to our original 

for(i=O; i<4; i++) 
B[il = B[il* (l-F[Ol) + F[il ; 

We could go really nuts and define a set of overloaded 
operators for four-dimensional array arithmetic. Compositing 
could then look something like 

B = B*(l-F[O]) + F; 

I’m not sure I would recommend this after seeing the sort of 
code most Ct-t compilers come up with for such things. In- 
stead I’ll splurge on source code and write explicitly 

transparency = 1-F.a; 
B.r = B.r*transparency + F.r; 
B.g = B.g*transparency + F.g; 
B.b = B.b*transparency + F.b; 
B.a = B.a*transparency + F.a; 

Again, for most rendering applications, this new formula- 
tion is the only access method you need to the frame buffer. 
I’ve resisted the temptation (barely) to overload a pixel class 
operator to do this. 

Examples 

examples of the types of things we might do with this. 
To motivate our next bit of gimcrackery, let’s look at a few 

Example 1 
Load an opaque background into the frame buffer, one 

with B. a==l everywhere. 
Run a rendering program that overlays its results into the 

frame buffer. Pixels inside the object (which is most of them) all 
have F. a==l. Only the ones on the edges have F. a! =l. 

Run another rendering program that similarly overlays its 
results into the frame buffer. Part of the new object overlaps the 
first one, and part of it sticks out onto the background. Note that 
a rendering program doesn’t need to know what’s under it. The 
overlay operation does the correct thing. 

Run another rendering program that places algorithmi- 
cally defined shapes. These might be lines, spots, smears, and so 
forth, with a constant color across them but whose shapes are 
“sculpted” by the alpha channel. 

Save the resultant image to a file. 

Example 2 
Load the frame buffer with the transparent color (O,O,O,O). 
Render all sorts of stuff as in the previous example. 
Save the resultant image to a file. This rectangular image 

will have B . a==O for pixels that never got “hit” by any ren- 
derers (which might be a substantial portion of the image). 

Example 3 
Load an opaque background into the frame buffer. 
Overlay the image saved from Example 2 (there is was the 

partially transparent background image B; it now becomes the 
foreground image F). Only those pixels with F . a ! ==0 will af- 
fect the background. 

Example 4 
I’ll just mention here an entirely different way to do this 

that I don’t happen to use. It involves the classic engineering 
trick of reversing the order of loops. The above examples 
performed the operations in the order 

for (each overlayed image) 
for (each pixel in image) 
composite with background 

Some systems reverse this order and do 

for (each pixel in output) 
for (each overlayed image) 
composite all together 

This latter allows some speedup by optimizing the (possibly 
complicated) algebraic expression generated by all the pixel 
arithmetic for one pixel. 

Short cuts 

metic can wind up being done with alpha values of 0 and 1. 
This motivates us to look for a few shortcuts in our imple- 
mentation. Since the arithmetic is identical for the four fields 
of a pixel, I’ll write calculations just once using the symbol 
F . i (where i stands for r, g, b, or a). Table 1 shows possible 
special cases. 

You might think that the case of F . a==O necessarily im- 
plies that all the color fields F . i must be 0. After all, we are 

Examples 1 through 3 show that a lot of compositing arith- 
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Table 1. New value of B.  i composited with associated 

F .  a==O B . i  = B . i + F . i  

B.  a==O 

B . a = = l  

I B . i  = F . i  I F . a = = l  

B.a = F.a 

Unchanged 

F . a = = l  B . i  = F . i  

F .a==anything else B .  i = B. i* ( 1 - F .  a )  +F. i 

F atop B 

F xor B 

I F.a==anythingelse I B . i  = ~ . i * ( l - F . a ) + F . i  I 

F . i * B . a  + B . i * ( l - F . a )  

F . i * ( l - B . a )  + B.i*( l -F .a )  

Table 2. New value of B . a where 
B.a = B.a*(l-F.a)+F.a. 

I B.a==anythingetse I B.a = B.a*(l-F.a)+F.a I 
I Table 3. Porter and Duff operators in C notation. I 

F over B B . i * ( l - F . a )  + F . i  

F . i * B . a  

F o u t  B F. i* (1-B .  a) Color of B unused 

I F p l u s  B 1 F . i  + B . i  

dealing with associated colors here. The first case would then 
just leave B . i unchanged. It turns out, however, that there 
are some reasons not to always make this assumption. I’ll go 
more deeply into this in a later column. Anyway, here’s the 
optimized algorithm: 

i f  (F.a==O) B.i += F.i; 
else if (F.a==l) B.i = F.i; 
else B.i = B.i*(l-F.a)+F.i; 

We can do a little better with the a field in the latter case. 
If B . a==l, we can skip the calculation of a new B . a since it 
will stay 1 no matter what F . a is. Table 2 shows the possible 
values of B . a and what the calculations look like with redun- 
dant arithmetic and stores removed. 

likely case is B. a=l. We therefore make that the fastest test. 
Now turn this into an algorithm: 

To take advantage of this, let’s first note that the most 

if (B.a!=l) 
if(B.a==O) B.a = F.a; 
else ~ . a  = B.a*(l-F.a)+F.a; 1 

There is, of course, a trade-off here between the number of 
tests you make versus the time to just go ahead and do the 
general arithmetic. On some pipelined machines, it’s proba- 
bly better to avoid conditional jump instructions, do the arith- 
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metic always, and keep the pipe full. Still, I’ve found the 
above to be worthwhile in my situation. In general, I think it’s 
nicest to provide one general-purpose, easy-to-remember 
function, then test for special cases inside the function. The 
special-case testing is usually negligible compared to the 
arithmetic you save by detecting the special case. 

Other operators 
Just for completeness, Table 3 lists how Porter and Duff‘s 

other operators look in my notation and what the algebra 
boils down to. Of these, the “over” operator is by far the most 
often used. This leads us to wonder the following: How about 
storing the value (1 -F . a) instead of F . a in a pixel? This 
value would be the transparency rather than the opacity of 
the pixel. Let’s call this field t. Transparencies combine by 
simple multiplication. Why? Remember, in our original 
derivation of y, we had 

(1 - a)(l - p) = 1 - y 

and 1 minus opacity is transparency. The associated-color 
compositing operation would then be 

B.i = B.i*F.t i F.i; / /  for i=r,g,b 
B.t = B.t*F.t; 

This formulation is, of course, even less arithmetic than be- 
fore. The only trouble is that most industry standard file for- 
mats and compositing programs deal with alpha values as 
meaning opacity. You would have to translate your image by 
storing (1-B . t) when you output your image to a file. Since 
the transparency-based formulation only saves one add and 
one subtract per pixel, it might not be worth it. 

A teaser 
In a future column I’ll talk about how number representa- 

tions for pixels and round-off error affect compositing calcu- 
lations. And I’ll froth about the phenomenal stupidity of 
compilers and why parts of this calculation should still be 
done in assembly language. 0 
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