Introduction to Recognition

Presented by Abe Davis
Most Slides Originally from Noah Snavely
Where we go from here

- What we know: Geometry
 - What is the shape of the world?
 - How does that shape appear in images?
 - How can we infer that shape from one or more images?

- What’s next: Recognition
 - What are we looking at?
What is “Recognition”?

Next few slides adapted from Li, Fergus, & Torralba’s excellent short course on category and object recognition
What is “Recognition”?

- Verification: is that a lamp?
What is “Recognition”?

- Verification: is that a lamp?
- Detection: where are the people?
What is “Recognition”?

• Verification: is that a lamp?
• Detection: where are the people?
• Identification: is that Potala Palace?
What is “Recognition”?

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
What is “Recognition”?

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization
What is “Recognition”?

- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization
- Activity / Event Recognition

What are these people doing?
Object recognition: Is it really so hard?

This is a chair

Find the chair in this image

Output of normalized correlation
Object recognition: Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to do the trick
A “popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts.” Nivatia & Binford, 1977.
Why not use SIFT matching for everything?

- Works well for object *instances* (or distinctive images such as logos)

- Not great for generic object *categories*
And it can get a lot harder

Applications: Photography
Applications: Shutter-free Photography

Take Your Best Selfie Automatically, with Photobooth on Pixel 3

(Also features “kiss detection”)
Applications: Assisted / autonomous driving
Applications: Photo organization

Source: Google Photos
Applications: medical imaging

Dermatologist-level classification of skin cancer

https://cs.stanford.edu/people/esteva/nature/
Why is recognition hard?

Variability: Camera position, Illumination, Shape, etc…
Challenge: lots of potential classes

How many object categories are there?

~10,000 to 30,000
Challenge: variable viewpoint

Michelangelo 1475-1564
Challenge: variable illumination

image credit: J. Koenderink
Challenge: scale

and small things from Apple.
(Actual size)
Challenge: deformation

[Image of gymnasts performing on rings and in the air]

[Diagram of a human figure]

[Image of gymnasts performing various routines]

[Text: Punch Layout, Arabian, Double Front, Roundoff, Back Handspring, Roundoff, One-and-a-half Stepout]
Challenge: Occlusion

Magritte, 1957
Challenge: background clutter

Kilmeny Niland. 1995
Challenge: intra-class variations
A brief history of image recognition

• What worked in 2011 (pre-deep-learning era in computer vision)
 • Optical character recognition
 • Face detection
 • Instance-level recognition (what logo is this?)
 • Pedestrian detection (sort of)
 • ... that’s about it
A brief history of image recognition

• What works now, post-2012 (deep learning era)
 • Robust object classification across thousands of object categories (outperforming humans)

“Spotted salamander”
A brief history of image recognition

• What works now, post-2012 (deep learning era)
 • Face recognition at scale

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff
fschroff@google.com
Google Inc.

Dmitry Kalenichenko
dkalenichenko@google.com
Google Inc.

James Philbin
jphilbin@google.com
Google Inc.

Figure 1. Illumination and Pose invariance. Pose and illumination have been a long standing problem in face recognition. This figure shows the output distances of FaceNet between pairs of faces of the same and a different person in different pose and illumination combinations. A distance of 0.0 means the faces are identical, 4.0 corresponds to the opposite spectrum, two different identities. You can see that a threshold of 1.1 would classify every pair correctly.
A brief history of image recognition

- What works now, post-2012 (deep learning era)
 - High-quality face synthesis (but not yet for completely general scenes)

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA)
http://stylegan.xyz/paper

These people are not real – they were produced by our generator that allows control over different aspects of the image.
What Matters in Recognition?

• Learning Techniques
 • E.g. choice of classifier or inference method

• Representation
 • Low level: SIFT, HoG, GIST, edges
 • Mid level: Bag of words, sliding window, deformable model
 • High level: Contextual dependence
 • Deep learned features

• Data
 • More is always better (as long as it is good data)
 • Annotation is the hard part
What Matters in Recognition?

• Learning Techniques
 • E.g. choice of classifier or inference method

• Representation
 • Low level: SIFT, HoG, GIST, edges
 • Mid level: Bag of words, sliding window, deformable model
 • High level: Contextual dependence
 • **Deep learned features**

• Data
 • More is always better (as long as it is good data)
 • Annotation is the hard part
24 Hrs in Photos

Flickr Photos From 1 Day in 2011

http://www.kesselskramer.com/exhibitions/24-hrs-of-photos
Data Sets

- **ImageNet**
 - Huge, Crowdsourced, Hierarchical, *Iconic* objects

- **PASCAL VOC**
 - *Not* Crowdsourced, bounding boxes, 20 categories

- **SUN Scene Database, Places**
 - *Not* Crowdsourced, 397 (or 720) scene categories

- **LabelMe (Overlaps with SUN)**
 - Sort of Crowdsourced, Segmentations, Open ended

- **SUN Attribute database (Overlaps with SUN)**
 - Crowdsourced, 102 attributes for every scene

- **OpenSurfaces**
 - Crowdsourced, materials

- **Microsoft COCO**
 - Crowdsourced, large-scale objects
Large Scale Visual Recognition Challenge (ILSVRC)

20 object classes 22,591 images
1000 object classes 1,431,167 images

Variety of object classes in ILSVRC

PASCAL

- **birds**
 - bird
 - flamingo
 - cock
 - ruffed grouse
 - quail
 - partridge

- **bottles**
 - bottle
 - pill bottle
 - beer bottle
 - wine bottle
 - water bottle
 - pop bottle

- **cars**
 - car
 - race car
 - wagon
 - minivan
 - jeep
 - cab
Variety of object classes in ILSVRC

Amount of Texture

Color Distinctiveness

Shape Distinctiveness

Real-world Size

Low

High
What’s Still Hard?

• Few shot learning
 • How do we generalize from only a small number of examples?

• Fine-grain classification
 • How do we distinguish between more subtle class differences?

Animal->Bird->Oriole…

Baltimore Oriole

Hooded Oriole

Scott Oriole
What’s Still Hard?

- Few shot learning
 - How do we generalize from only a small number of examples?
Questions?
CS5670: Computer Vision
Next Time…

Image Classification

Some Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/
Next Time

• Image classification pipeline
• Training, validation, testing
• Nearest neighbor classification
• Linear classification

• Building up to CNNs for learning
 • Next four lectures on deep learning
Image Classification: A core task in Computer Vision

• Assume given set of discrete labels
 • e.g. \{cat, dog, cow, apple, tomato, truck, ... \}

\[f(\text{apple}) = \text{“apple”} \]
\[f(\text{tomato}) = \text{“tomato”} \]
\[f(\text{cow}) = \text{“cow”} \]
Classification

“Cat”

“Toaster”

“Dog”
Image classification demo

https://cloud.google.com/vision/

See also:
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
Questions?