Course review

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic/notes</th>
<th>Readings</th>
<th>Assignments, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jan 24</td>
<td>Introduction and Overview [ppt</td>
<td>pdf]</td>
<td>Szeliski 1</td>
</tr>
<tr>
<td>1</td>
<td>29</td>
<td>Image filtering [ppt</td>
<td>pdf]</td>
<td>Szeliski 3.1</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>Image filtering 2 [ppt</td>
<td>pdf]</td>
<td>Szeliski 3.2</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>Image Resampling [ppt</td>
<td>pdf]</td>
<td>Szeliski 3.4, 2.3.1</td>
</tr>
<tr>
<td>4</td>
<td>Feb 4</td>
<td>Features Detection [ppt</td>
<td>pdf]</td>
<td>Szeliski 4.1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>Features Invariance [ppt</td>
<td>pdf]</td>
<td>Szeliski 4.1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>Descriptors [ppt</td>
<td>pdf]</td>
<td>Szeliski 4.1</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>Image Transformation [ppt</td>
<td>pdf]</td>
<td>Szeliski 3.6</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>Alignment [ppt</td>
<td>pdf]</td>
<td>Szeliski 6.1</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>RANSAC [ppt</td>
<td>pdf]</td>
<td>Szeliski 6.1</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>Cameras [ppt</td>
<td>pdf]</td>
<td>Szeliski 2.1.3, 2.1.6</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>Panoramas [ppt</td>
<td>pdf]</td>
<td>Szeliski 9</td>
</tr>
</tbody>
</table>
Topics – image processing

• Filtering
• Edge detection
• Image resampling / aliasing / interpolation
• Feature detection
 – Harris corners
 – SIFT
 – Invariant features
• Feature matching
Topics – 2D geometry

- Image transformations
- Image alignment / least squares
- RANSAC
- Panoramas
Topics – 3D geometry

• Cameras
• Perspective projection
• Single-view modeling (points, lines, vanishing points, etc.)
• Stereo
• Two-view geometry (F-matrices, E-matrices)
• Structure from motion
• Multi-view stereo
Topics – geometry, continued

• Light, color, perception
• Lambertian reflectance
• Photometric stereo
Topics – Recognition

• Different kinds of recognition problems
 – Classification, detection, segmentation, etc.

• Machine learning basics
 – Nearest neighbors
 – Linear classifiers
 – Hyperparameters
 – Training, test, validation datasets

• Loss functions for classification
Topics – Recognition, continued

• Neural networks
• Convolutional neural networks
 – Architectural components: convolutional layers, pooling layers, fully connected layers
• Generative methods
Questions?
Image Processing
Linear filtering

• One simple function on images: linear filtering (cross-correlation, convolution)
 – Replace each pixel by a linear combination of its neighbors

• The prescription for the linear combination is called the “kernel” (or “mask”, “filter”)

```
Local image data

<table>
<thead>
<tr>
<th>10</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

kernel

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Modified image data

<table>
<thead>
<tr>
<th>8</th>
</tr>
</thead>
</table>
```

Source: L. Zhang
Convolution

• Same as cross-correlation, except that the kernel is “flipped” (horizontally and vertically)

\[G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v] \]

This is called a **convolution** operation:

\[G = H \ast F \]

• Convolution is **commutative** and **associative**
Gaussian Kernel

\[
G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}
\]

Source: C. Rasmussen
Image gradient

• The gradient of an image: \(\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \)

The gradient points in the direction of most rapid increase in intensity

\[\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right] \quad \nabla f = \left[0, \frac{\partial f}{\partial y} \right] \]

The edge strength is given by the gradient magnitude:

\[||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \]

The gradient direction is given by:

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]

• how does this relate to the direction of the edge?

Source: Steve Seitz
Finding edges

gradient magnitude
Finding edges

thinning
(non-maximum suppression)
Image sub-sampling

Why does this look so crufty?

Source: S. Seitz
Subsampling with Gaussian pre-filtering

Solution: filter the image, *then* subsample

Source: S. Seitz
Image interpolation

- **sinc(x)**: "Ideal" reconstruction
- **II(x)**: Nearest-neighbor interpolation
- **Λ(x)**: Linear interpolation
- **gauss(x)**: Gaussian reconstruction

Source: B. Curless
Image interpolation

Original image: x 10

Nearest-neighbor interpolation
Bilinear interpolation
Bicubic interpolation
The second moment matrix

The surface $E(u,v)$ is locally approximated by a quadratic form.

$$E(u, v) \approx Au^2 + 2Buv + Cv^2$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y) \in W} I_x^2$$

$$B = \sum_{(x,y) \in W} I_x I_y$$

$$C = \sum_{(x,y) \in W} I_y^2$$
The Harris operator

λ_{min} is a variant of the “Harris operator” for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\text{determinant}(H)}{\text{trace}(H)}$$

- The *trace* is the sum of the diagonals, i.e., $\text{trace}(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
- Lots of other detectors, this is one of the most popular
Laplacian of Gaussian

- “Blob” detector

- Find maxima and minima of LoG operator in space and scale
Scale-space blob detector: Example

sigma = 11.9912
Feature distance

How to define the difference between two features f_1, f_2?

- Better approach: ratio distance = $\frac{||f_1 - f_2||}{||f_1 - f_2'||}$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values for ambiguous matches
2D Geometry
Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?
- Is the same for any point p
- Can be described by just a few numbers (parameters)

Let’s consider linear xforms (can be represented by a 2D matrix):

$$p' = Tp$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix}$$
2D image transformations

These transformations are a nested set of groups
 • Closed under composition and inverse is a member
Projective Transformations aka Homographies aka Planar Perspective Maps

\[H = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \]

Called a homography (or planar perspective map)
Inverse Warping

• Get each pixel \(g(x',y') \) from its corresponding location \((x,y) = T^{-1}(x,y) \) in \(f(x,y) \)

• Requires taking the inverse of the transform
Affine transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= \begin{bmatrix}
 ax + by + c \\
 dx + ey + f \\
 1
\end{bmatrix}
\]
Solving for affine transformations

- Matrix form

$$\begin{bmatrix}
x_1 & y_1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_1 & y_1 & 1 \\
x_2 & y_2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_2 & y_2 & 1 \\
\vdots \\
x_n & y_n & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_n & y_n & 1 \\
\end{bmatrix} \begin{bmatrix}
a \\
b \\
c \\
d \\
e \\
f \\
\end{bmatrix} = \begin{bmatrix}
x'_1 \\
y'_1 \\
x'_2 \\
y'_2 \\
\vdots \\
x'_n \\
y'_n \\
\end{bmatrix} \begin{bmatrix}
2n \times 6 \\
6 \times 1 \\
2n \times 1 \\
\end{bmatrix}$$
RANSAC

• General version:
 1. Randomly choose s samples
 • Typically $s =$ minimum sample size that lets you fit a model
 2. Fit a model (e.g., line) to those samples
 3. Count the number of inliers that approximately fit the model
 4. Repeat N times
 5. Choose the model that has the largest set of inliers
Projecting images onto a common plane

Each image is warped with a homography H

Can’t create a 360 panorama this way...

Mosaic PP
3D Geometry
Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?
Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
-z/d \\
1
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
-x/d \\
y \\
-z/d \\
z
\end{bmatrix}
\]

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**
\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Point and line duality

– A line \(l \) is a homogeneous 3-vector
– It is \(\perp \) to every point (ray) \(p \) on the line: \(l \cdot p = 0 \)

What is the line \(l \) spanned by rays \(p_1 \) and \(p_2 \)?

• \(l \) is \(\perp \) to \(p_1 \) and \(p_2 \) \(\Rightarrow \) \(l = p_1 \times p_2 \)
• \(l \) can be interpreted as a plane normal

What is the intersection of two lines \(l_1 \) and \(l_2 \)?

• \(p \) is \(\perp \) to \(l_1 \) and \(l_2 \) \(\Rightarrow \) \(p = l_1 \times l_2 \)

Points and lines are dual in projective space
Vanishing points

• Properties
 – Any two parallel lines (in 3D) have the same vanishing point v
 – The ray from C through v is parallel to the lines
 – An image may have more than one vanishing point
 • in fact, every image point is a potential vanishing point
Measuring height

Camera height

5.4

3.3

2.8
Your basic stereo algorithm

For each epipolar line
 For each pixel in the left image
 • compare with every pixel on same epipolar line in right image
 • pick pixel with minimum match cost

Improvement: match **windows**
Stereo as energy minimization

- Better objective function

\[E(d) = E_d(d) + \lambda E_s(d) \]

- Match cost: Want each pixel to find a good match in the other image.
- Smoothness cost: Adjacent pixels should (usually) move about the same amount.
Fundamental matrix

- This *epipolar geometry* of two views is described by a Very Special 3x3 matrix \mathbf{F}, called the *Fundamental matrix*.
- \mathbf{F} maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point p is: $\mathbf{F}p$
- *Epipolar constraint* on corresponding points: $q^T \mathbf{F}p = 0$
Epipolar geometry demo
8-point algorithm

\[\begin{bmatrix}
 u_1 u_1' & v_1 u_1' & u_1' & u_1 v_1' & v_1 v_1' & v_1' & u_1 & v_1 & 1 \\
 u_2 u_2' & v_2 u_2' & u_2' & u_2 v_2' & v_2 v_2' & v_2' & u_2 & v_2 & 1 \\
 \vdots & \vdots \\
 u_n u_n' & v_n u_n' & u_n' & u_n v_n' & v_n v_n' & v_n' & u_n & v_n & 1 \\
\end{bmatrix}
\begin{bmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32} \\
 f_{33} \\
\end{bmatrix} = 0
\]

- In reality, instead of solving \(Af = 0 \), we seek \(f \) to minimize \(\| Af \| \), least eigenvector of \(A^T A \).
Structure from motion

\[\Pi_1 X_1 \sim p_{11} \]

\[\text{minimize } f(R, T, P) \]

non-linear least squares
Stereo: another view
Fig. 5. SSD values versus inverse distance: (a) $B = b$; (b) $B = 2b$; (c) $B = 3b$; (d) $B = 4b$; (e) $B = 5b$; (f) $B = 6b$; (g) $B = 7b$; (h) $B = 8b$. The horizontal axis is normalized such that $8kF = 1$.

Fig. 6. Combining two stereo pairs with different baselines.

Fig. 7. Combining multiple baseline stereo pairs.
Plane-Sweep Stereo

- Sweep family of planes parallel to the reference camera image plane
- Reproject neighbors onto each plane (via homography) and compare reprojections
Light, reflectance, cameras
Radiometry

What determines the brightness of an image pixel?
Classic reflection behavior

ideal specular

rough specular

Lambertian

from Steve Marschner
Photometric stereo

Can write this as a matrix equation:

\[
\begin{bmatrix}
 I_1 \\
 I_2 \\
 I_3
\end{bmatrix} = k_d \begin{bmatrix}
 L_1^T \\
 L_2^T \\
 L_3^T
\end{bmatrix} N
\]
Example
Recognition
Image Classification

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

→ cat
Object detection
k-nearest neighbor

- Find the k closest points from training data
- Take **majority vote** from K closest points
Hyperparameters

• What is the **best distance** to use?
• What is the **best value of k** to use?

• These are **hyperparameters**: choices about the algorithm that we set rather than learn

• How do we set them?
 – One option: try them all and see what works best
Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train test

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

Better!

train validation test
Parametric approach: Linear classifier

\[f(x, W) = Wx + b \]

- \([32 \times 32 \times 3]\) array of numbers 0...1
- \([10 \times 1]\) parameters, or “weights”
- \([3072 \times 1]\) array
- \([10 \times 1]\) array

10 numbers, indicating class scores
Loss function, cost/objective function

- Given ground truth labels \((y_i)\), scores \(f(x_i, W)\) – how unhappy are we with the scores?

- Loss function or objective/cost function measures unhappiness

- During training, **want to find the parameters** \(W\) **that minimizes the loss function**
Softmax classifier

\[f(x_i, W) = Wx_i \]

score function is the same

\[
\frac{e^{f_{y_i}}}{\sum_j e^{f_j}}
\]

softmax function

\[
[1, -2, 0] \rightarrow [e^1, e^{-2}, e^0] = [2.71, 0.14, 1] \rightarrow [0.7, 0.04, 0.26]
\]

Interpretation: squashes values into range 0 to 1

\[P(y_i \mid x_i; W) \]
Neural networks

(Before) Linear score function: \[f = Wx \]

(Now) 2-layer Neural Network

\[f = W_2 \max(0, W_1 x) \]

\[\begin{array}{ccc}
W_1 & h & W_2 \\
3072 & 100 & 10 \\
\end{array} \]

\[\begin{array}{ccc}
W_1 & h & W_2 \\
(100 \times 3072 \text{ matrix}) & & \text{100D intermediate vector} \\
& & (10 \times 100 \text{ matrix}) \\
\end{array} \]
Convolutional neural networks
“Generative Adversarial Network” (GANs)

Real photos

Generated images

[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]
Questions?

• Good luck!