CS5670: Computer Vision
Noah Snavely

Lecture 10: Cameras
Announcements

• Take-home midterm
 – To be distributed at the end of class this Wednesday, March 13
 – Due at the beginning of class on Wednesday, March 20

• Project 3: Panorama Stitching
 – Plan to release this week
 – Due on Friday, March 29
Can we use homographies to create a 360 panorama?

- In order to figure this out, we need to learn what a camera is
Let’s design a camera
- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
- No. This is a bad camera.
Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the **aperture**
 - How does this transform the image?
Camera Obscura

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Source: A. Efros
Camera Obscura
Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/
Pinhole photography

6-month exposure
Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - *Diffraction* effects...
Shrinking the aperture
Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are “in focus”
 - other points project to a “circle of confusion” in the image
 - Changing the shape of the lens changes this distance
The human eye is a camera

- **Iris** - colored annulus with radial muscles
- **Pupil** - the hole (aperture) whose size is controlled by the iris
 - What’s the “film”?
 - photoreceptor cells (rods and cones) in the **retina**
Top row: 1 Bengal tiger. 2 Asian elephant. 3 Zebra. 4 Chimpanzee. 5 Flamingo.
Second row: 1 Domestic cat. 2 Hairless sphynx cat. 3 Grey wolf. 4 Booted eagle. 5 Iguana.
Third row: 1 Macaw. 2 Jaguar. 3 Rabbit. 4 Cheetah 5 Horse.
Fourth row: 1 Lioness. 2 Bearded dragon (a type of lizard). 3 Leaf-tailed gecko. 4 Macaroni penguin. 5 Alligator.
Fifth row: 1 Great horned owl. 2 Mountain lion. 3 Boa constrictor. 4 Pufferfish. 5 African crested crane.
Eyes in nature: eyespots to pinhole

http://upload.wikimedia.org/wikipedia/commons/6/6d/Mantis_shrimp.jpg
Projection
Projection
Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html
Modeling projection

• The coordinate system
 – We will use the pinhole model as an approximation
 – Put the optical center (Center Of Projection) at the origin
 – Put the image plane (Projection Plane) in front of the COP
 • Why?
 – The camera looks down the negative z axis
 • we like this if we want right-handed-coordinates
Modeling projection

• Projection equations
 – Compute intersection with PP of ray from \((x,y,z)\) to COP
 – Derived using similar triangles (on board)
 \[
 (x, y, z) \rightarrow \left(-d\frac{x}{z}, -d\frac{y}{z}, -d \right)
 \]
 • We get the projection by throwing out the last coordinate:
 \[
 (x, y, z) \rightarrow \left(-d\frac{x}{z}, -d\frac{y}{z} \right)
 \]
Modeling projection

• Is this a linear transformation?
 • no—division by z is nonlinear

Homogeneous coordinates to the rescue—again!

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad \text{homogeneous image coordinates} \]

\[(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \text{homogeneous scene coordinates} \]

Converting from homogeneous coordinates

\[\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \quad \text{and} \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)\]
Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
z/d \\
1 \\
\end{bmatrix}
\Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})
\]

divide by third coordinate

This is known as **perspective projection**

- The matrix is the **projection matrix**

- (Can also represent as a 4x4 matrix – OpenGL does something like this)
Perspective Projection

How does scaling the projection matrix change the transformation?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
-z/d \\
1
\end{bmatrix}
\Rightarrow \left(-\frac{d}{z}, \; -\frac{d}{z}\right)
\]

\[
\begin{bmatrix}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
-dx \\
-dy \\
-z \\
1
\end{bmatrix}
\Rightarrow \left(-\frac{d}{z}, \; -\frac{d}{z}\right)
\]
Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} \Rightarrow (x, y)
Orthographic projection
Perspective projection
Variants of orthographic projection

• Scaled orthographic
 – Also called “weak perspective”
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1/d \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1/d \\
 \end{bmatrix}
 \Rightarrow (dx, dy)
 \]

• Affine projection
 – Also called “paraperspective”
 \[
 \begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 z \\
 1 \\
 \end{bmatrix}
 \]
Dimensionality Reduction Machine
(3D to 2D)

3D world

2D image

What have we lost?

- Angles
- Distances (lengths)

Slide by A. Efros
Figures © Stephen E. Palmer, 2002
Projection properties

• Many-to-one: any points along same ray map to same point in image

• Points \rightarrow points

• Lines \rightarrow lines (collinearity is preserved)
 – But line through focal point projects to a point

• Planes \rightarrow planes (or half-planes)
 – But plane through focal point projects to line
Projection properties

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But parallels parallel to the image plane remain parallel
Questions?
Camera parameters

- How can we model the geometry of a camera?

Two important coordinate systems:
1. *World* coordinate system
2. *Camera* coordinate system

How do we project a given point \((x, y, z)\) in world coordinates?
Camera parameters

• To project a point \((x,y,z)\) in world coordinates into a camera

• First transform \((x,y,z)\) into camera coordinates

• Need to know
 – Camera position (in world coordinates)
 – Camera orientation (in world coordinates)

• Then project into the image plane to get a pixel coordinate
 – Need to know camera intrinsics
Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point (x'_c, y'_c), pixel size (s_x, s_y)
- blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation

$$
\mathbf{X} = \begin{bmatrix}
 s_x \\
 s_y \\
 s
\end{bmatrix}
= \begin{bmatrix}
 * & * & * & * \\
 * & * & * & * \\
 * & * & * & * \\
 * & * & * & *
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
= \mathbf{ΠX}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\mathbf{Π} = \begin{bmatrix}
 -f_s x & 0 & x'_c \\
 0 & -f_s y & y'_c \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 R_{3x3} & 0_{3x1} & \mathbf{I}_{3x3} & T_{3x1}
\end{bmatrix}
$$

- The definitions of these parameters are not completely standardized
 - especially intrinsics—varies from one book to another
Projection matrix

\[q = (x, y, z, 1) \]

(in homogeneous image coordinates)
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by $-\mathbf{c}$

How do we represent translation as a matrix multiplication?

$$T = \begin{bmatrix}
I_{3\times3} & -\mathbf{c} \\
0 & 0 & 0 & 1
\end{bmatrix}$$
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by $-c$

Step 2: Rotate by R

$R = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix}$

3x3 rotation matrix
Extrinsics

• How do we get the camera to “canonical form”?

 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)
Step 2: Rotate by \(R\)

\[
R = \begin{bmatrix}
 u^T \\
 v^T \\
 w^T \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

(with extra row/column of [0 0 0 1])
Perspective projection

\[
\begin{bmatrix}
-f & 0 & 0 \\
0 & -f & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

\(K\) (intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

in general, \(K = \begin{bmatrix}
-f & s & c_x \\
0 & -\alpha f & c_y \\
0 & 0 & 1
\end{bmatrix}\) (upper triangular matrix)

\(\alpha\) : aspect ratio (1 unless pixels are not square)

\(s\) : skew (0 unless pixels are shaped like rhombi/parallelograms)

\((c_x, c_y)\) : principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin)
Focal length

• Can think of as “zoom”

• Also related to field of view
Field of view

APS-C Crop Body Measurement Table

| Lens | After 1.62 Multiplier | APS-C Sensor (1.62 lens multiplier)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Canon 60D, 7D, 70D, T3i, T4i</td>
</tr>
<tr>
<td>18mm</td>
<td>29.16mm</td>
<td>Three hands wide at full arms length.</td>
</tr>
<tr>
<td>28mm</td>
<td>45.36mm</td>
<td>Slightly less than two hands wide at full arms length.</td>
</tr>
<tr>
<td>35mm</td>
<td>56.7mm</td>
<td>One hand + width of one fist at full arms length.</td>
</tr>
<tr>
<td>50mm</td>
<td>81.0mm</td>
<td>One hand wide + width of thumb at full arms length.</td>
</tr>
<tr>
<td>55mm</td>
<td>89.1mm</td>
<td>Slightly less than one hand wide at full arms length.</td>
</tr>
<tr>
<td>85mm</td>
<td>137.7mm</td>
<td>Inside edge of thumb to tip of forefinger wide with hand in "L" shape, thumb up.</td>
</tr>
</tbody>
</table>

http://www.dslrsolutions.net/3298/using-your-hands-as-focal-length-calculator/
Focal length in practice

- 24mm
- 50mm
- 135mm

Illustration showing the angles and focal lengths corresponding to the images.

Fredo Durand
Focal length = cropping

24mm

50mm

135mm
Focal length vs. viewpoint

- Telephoto makes it easier to select background (a small change in viewpoint is a big change in background.)
This part converts 3D points in world coordinates to 3D rays in the camera’s coordinate system. There are 6 parameters represented (3 for position/translation, 3 for rotation).
Projection matrix

\[\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 \end{bmatrix} \]

(t in book’s notation)
Projection matrix

\[\mathbf{q} = (x, y, z, 1) \]

(in homogeneous image coordinates)
Questions?
Perspective distortion

- Problem for architectural photography: converging verticals
Perspective distortion

• Problem for architectural photography: converging verticals

Tilting the camera upwards results in converging verticals

Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building

Shifting the lens upwards results in a picture of the entire subject

• Solution: view camera (lens shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens

Source: F. Durand
Perspective distortion

• Problem for architectural photography: converging verticals

• Result:
Perspective distortion

• What does a sphere project to?
Perspective distortion

• The exterior columns appear bigger
• The distortion is not due to lens flaws
• Problem pointed out by Da Vinci
Perspective distortion: People
Distortion

• Radial distortion of the image
 – Caused by imperfect lenses
 – Deviations are most noticeable for rays that pass through the edge of the lens
Correcting radial distortion

from Helmut Dersch
Distortion

(a) Orthoscopic

(b) Barrel

(c) Pin-cushion
Modeling distortion

Project \((\tilde{x}, \tilde{y}, \tilde{z})\) to “normalized” image coordinates

\[
\begin{align*}
x'_n &= \frac{\tilde{x}}{\tilde{z}} \\
y'_n &= \frac{\tilde{y}}{\tilde{z}}
\end{align*}
\]

Apply radial distortion

\[
r^2 = x'_n^2 + y'_n^2
\]

\[
x'_d = x'_n(1 + \kappa_1 r^2 + \kappa_2 r^4)
\]

\[
y'_d = y'_n(1 + \kappa_1 r^2 + \kappa_2 r^4)
\]

Apply focal length

translate image center

\[
\begin{align*}
x' &= f x'_d + x_c \\
y' &= f y'_d + y_c
\end{align*}
\]

• To model lens distortion
 – Use above projection operation instead of standard projection matrix multiplication
Other types of projection

• Lots of intriguing variants...
• (I’ll just mention a few fun ones)
360 degree field of view...

• Basic approach
 – Take a photo of a parabolic mirror with an orthographic lens (Nayar)
 – Or buy one a lens from a variety of omnicam manufacturers...
 • See http://www.cis.upenn.edu/~kostas/omni.html
Tilt-shift

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html

Tilt-shift images from Olivo Barbieri and Photoshop imitations
Rotating sensor (or object)

Rollout Photographs © Justin Kerr
http://research.famsi.org/kerrmaya.html

Also known as “cyclographs”, “peripheral images”