CS5670: Computer Vision Noah Snavely

Recent advances in convolutional neural networks

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Readings

- Best practices for training CNNs
 - <u>http://cs231n.github.io/neural-networks-2/</u>
 - <u>http://cs231n.github.io/neural-networks-3/</u>
- CNN Architectures
 - <u>http://cs231n.github.io/convolutional-networks/</u>
 - <u>http://cs231n.github.io/transfer-learning/</u>

Announcements

- Final exam in class, Wednesday, May 9
 - Sample exam is now available (please check Piazza)
 - Final is open book / open note (please use your judgement see Piazza for more info)
 - No laptops / iPads / phones. Calculator is OK.
- Project 5 (CNNs) is out
 - Due Friday, May 11, by 11:59pm
 - To be done in groups of two

Course evaluations

- <u>https://apps.engineering.cornell.edu/CourseEval/</u>
- Course evaluations are very important and help us improve the course
- We will give 5 points of extra credit for submitting an evaluation (easy points!)
- Will leave the last few minutes of today's class for evaluation

Quiz 3

Last time

• Best practices for training CNNs

Today

- Finish best practices
- Recent advances
 - Deep learning frameworks and hardware
 - Network architectures
 - Generative methods

Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength
- Minimize the loss and monitor progress
- Fiddle with knobs

"Weight decay"

Regularization is also called "weight decay" because the weights "decay" each iteration:

$$L_{\text{reg}} = \lambda \frac{1}{2} ||W||_2^2 \longrightarrow \frac{\partial L}{\partial W} = \lambda W$$

Gradient descent step:

$$W \leftarrow W - \alpha \lambda W - \frac{\partial L_{\text{data}}}{\partial W}$$

\ 🕶

Weight decay: $\alpha\lambda$ (weights always decay by this amount)

Note: biases are sometimes excluded from regularization

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Simple but powerful technique to reduce overfitting:

[Srivasta et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", JMLR 2014]

Simple but powerful technique to reduce overfitting:

[Srivasta et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", JMLR 2014]

Regularization: Dropout How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Simple but powerful technique to reduce overfitting:

Note: Dropout can be interpreted as an approximation to taking the geometric mean of an ensemble of exponentially many models

[Srivasta et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", JMLR 2014]

How much dropout? Around p = 0.5

(a) Keeping n fixed.

[Srivasta et al, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", JMLR 2014]

Case study: [Krizhevsky 2012]

"Without dropout, our network exhibits substantial overfitting."

Dropout here

[Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012]

p = 0.5 # probability of keeping a unit active. higher = less dropout

```
def train_step(X):
    """ X contains the data """
```

```
# forward pass for example 3-layer neural network
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape)
```

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

(note, here X is a single input)

Example forward pass with a 3layer network using dropout

Figure: Andrej Karpathy

Test time: scale the activations

Expected value of a neuron *h* with dropout: E[h] = ph + (1-p)0 = ph

def predict(X): # ensembled forward pass H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations out = np.dot(W3, H2) + b3

We want to keep the same expected value

Figure: Andrej Karpathy

Summary

- Preprocess the data (subtract mean, sub-crops)
- Initialize weights carefully
- Use Dropout
- Use SGD + Momentum
- Fine-tune from ImageNet
- Babysit the network as it trains

Questions?

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 Conv-512	very little data	?	?
MaxPool Conv-256 Conv-256 MaxPool			
Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	?	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512MaxPoolMore specificConv-512MaxPoolMaxPoolConv-256Conv-256More genericMaxPoolMaxPool	very little data	Use Linear Classifier on top layer	?
Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512MaxPoolMore specificConv-512MaxPoolConv-512MaxPoolConv-256More genericMaxPoolMore generic	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Girshick, "Fast R-CNN", ICCV 2015 Figure copyright Ross Girshick, 2015. Reproduced with permission. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Figure copyright Ross Girshick, 2015. Reproduced with permission.

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

Caffe: <u>https://github.com/BVLC/caffe/wiki/Model-Zoo</u> TensorFlow: <u>https://github.com/tensorflow/models</u> PyTorch: <u>https://github.com/pytorch/vision</u>

Questions?

A zoo of deep learning frameworks!

What deep learning frameworks provide

- Quick way to develop and test new ideas
- Automatically compute gradients
- Run it all efficiently on GPU (wrap cuDNN, cuBLAS, dedicated hardware, etc.)
- One way to think of TensorFlow et al. is as a GPUoptimized, automatically differentiated gradient descent engine (not necessarily for deep learning!)
- Computation specified as a graph

Computation graphs

• Can compile to run on CPU or GPU

NVIDIA Tesla v100 (~\$10K)

• Or to specialize hardware...

TensorFlow: Tensor Processing Units

Google Cloud TPU = 180 TFLOPs of compute!
TensorFlow: Tensor Processing Units

Google Cloud TPU = 180 TFLOPs of compute!

NVIDIA Tesla V100 = 125 TFLOPs of compute

TensorFlow: Tensor Processing Units

Google Cloud TPU = 180 TFLOPs of compute! NVIDIA Tesla V100 = 125 TFLOPs of compute

NVIDIA Tesla P100 = 11 TFLOPs of compute GTX 580 = 0.2 TFLOPs

TensorFlow: Tensor Processing Units

Google Cloud TPU = 180 TFLOPs of compute!

Google Cloud TPU Pod = 64 Cloud TPUs = 11.5 PFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

Questions?

CNN Architectures

- AlexNet
- VGG
- GoogleNet
- ResNet
- •

LeNet

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

[Krizhevsky et al. 2012]

Architecture: CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV4 CONV5 Max POOL3 FC6 FC7 FC8

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 =>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 => Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

Output volume **[55x55x96]** Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2 Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2 Output volume: 27x27x96 Parameters: 0!

[Krizhevsky et al. 2012]

. . .

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

[Krizhevsky et al. 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x26] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

192 48 128 224 dense dense 192 128 Max 192 2048 2048 Max pooling Max 128 pooling pooling

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
- manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ZFNet

[Zeiler and Fergus, 2013]

AlexNet but: CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512 ImageNet top 5 error: 16.4% -> 11.7%

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet)

-> 7.3% top 5 error in ILSVRC'14

VGG16

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

AlexNet

VGG16

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

AlexNet

VGG16

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7²C² for C channels per layer

AlexNet

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Input

(not counting biases) memory: 224*224*3=150K params: 0 INPUT: [224x224x3] CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass) TOTAL params: 138M parameters

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	Note [.]
CONV3-64: [224x224x64] memory: 224*224*64=3.2M arams: (3*3*64)*64 = 36,864	
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	Maatmamariain
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	early CONV
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448	
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 POOL2: [56x56x128] memory: 56*56*128=400K params: 0 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 POOL2: [28x28x256] memory: 28*28*256=200K params: 0 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 POOL2: [14x14x512] memory: 14*14*512=100K params: 0 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 POOL2: [7x7x512] memory: 7*7*512=25K params: 0 FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

fc7

fc6

conv5 conv4

conv3

conv2

conv1

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners "Revolution of Depth"

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

[He et al., 2015]

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

[He et al., 2015]

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.
Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Softmax Case Study: ResNet FC 1000 Pool [He et al., 2015] 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 Full ResNet architecture: 3x3 conv. 512 relu 3x3 conv, 512 Stack residual blocks 3x3 conv. 512, /2 F(x) + x (+Every residual block has two 3x3 conv layers 3x3 conv. 128 3x3 conv 3x3 conv. 128 Х 3x3 conv. 128 F(x)relu identity 3x3 conv. 128 3x3 conv 3x3 conv, 128, / 2 3x3 conv. 64 3x3 conv. 64 **b** 3x3 conv. 64 Х 3x3 conv. 64 **Residual block** 3x3 conv. 64 3x3 conv. 64 6 Pool Input

-

-

Softmax Case Study: ResNet FC 1000 Pool [He et al., 2015] 3x3 conv, 512 3x3 conv. 512 3x3 conv, 512 Full ResNet architecture: 3x3 conv. 512 relu 3x3 conv, 512 Stack residual blocks 3x3 conv. 512, /2 F(x) + xEvery residual block has two 3x3 conv layers 3x3 conv. 128 3x3 conv Periodically, double # of 3x3 conv. 128 -3x3 conv, 128 Х filters and downsample 3x3 conv. 128 filters, /2 F(x)relu identity spatially with spatially using stride 2 stride 2 3x3 conv. 3x3 conv 3x3 conv, 128, / (/2 in each dimension) 3x3 conv. 64 3x3 conv, 64 3x3 conv. 64 filters 3x3 conv. 64

Х

Residual block

3x3 conv. 64

3x3 conv. 64 3x3 conv. 64 Pool x7 conv. 64. / Input

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning

Softmax

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

VGG: Highest

Comparing complexity...

GoogLeNet: most efficient

AlexNet: Smaller compute, still memory heavy, lower accuracy

ResNet: Moderate efficiency depending on model, highest accuracy

Summary: CNN Architectures

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos
- ResNet current best default, also consider SENet when available
- Trend towards extremely deep networks
- Significant research centers around design of layer / skip connections and improving gradient flow
- Efforts to investigate necessity of depth vs. width and residual connections
- Even more recent trend towards meta-learning

Questions?

Generative methods

- Unsupervised learning
- Generative models
- Generative adversarial networks (GANs)

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

DOG, DOG, CAT

Object Detection

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

GRASS, CAT, TREE, SKY

Semantic Segmentation

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

This image is CC0 public domain

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Principal Component Analysis (Dimensionality reduction)

This image from Matthias Scholz

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Autoencoders (Feature learning)

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Figure copyright lan Goodfellow, 2016. Reproduced with permission.

1-d density estimation

2-d density images left and right are CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc. **Unsupervised Learning**

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Unsupervised Learning

 Training data is cheap

 Data: x
 Holy grail: Solve

 Just data, no labels!
 Holy grail: Solve

 unsupervised learning

 => understand structure

 of visual world

 Goal: Learn some underlying

 hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Generative Models

Given training data, generate new samples from same distribution

Training data ~ $p_{data}(x)$ Generated samples ~ $p_{model}(x)$ Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Models

Given training data, generate new samples from same distribution

Training data ~ $p_{data}(x)$ Generated samples ~ $p_{model}(x)$ Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning **Several flavors:**

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Figures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission.

How to learn this feature representation?

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

Train such that features can be used to reconstruct original data

How to learn this feature representation?

"Autoencoding" - encoding itself

Reconstructed data

Encoder: 4-layer conv Decoder: 4-layer upconv

Some background first: Autoencoders Reconstructed data

Some background first: Autoencoders Reconstructed data

Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Features capture factors of variation in training data. Can we generate new images from an autoencoder?

Variational Autoencoders: Generating Data!

32x32 CIFAR-10

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Questions?

Course Evaluations

<u>https://apps.engineering.cornell.edu/CourseEval/</u>