CS5670: Computer Vision Noah Snavely

Backpropagation

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Readings

- Stochastic Gradient Descent & Backpropagation
 - http://cs231n.github.io/optimization-1/
 - http://cs231n.github.io/optimization-2/

Announcements

 Project 4 (Stereo) due tomorrow, April 26, 2018, by 11:59pm

 Quiz 3 in class, Monday, 4/30, first 10 minutes of class

- Final exam in class, May 9
 - Will provide some study materials

Today

- How to train CNNs
 - Backpropagation algorithm
 - Best practices for training deep CNNs
 - Data augmentation

Last time: neural networks

 Computation graph for a 2-layer neural network

Last time: convolutional neural networks

Last time: convolutional layers

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Last time: convolutional neural networks

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Output size: (N - F) / stride + 1

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 = 2 zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760 (btw, 1x1 convolution layers make perfect sense)

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

У

max pool with 2x2 filters and stride 2

6	8
3	4

Χ

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Summary of CNNs

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm

Questions?

Bigger picture

- A convolutional neural network can be thought of as a function from images to class scores
 - With millions of adjustable weights...
 - ... leading to a very non-linear mapping from images to features / class scores.
 - We will set these weights based on classification accuracy on training data...
 - ... and hopefully our network will generalize to new images at test time

Back to optimization

 Now we know what the structure of our function from images -> class scores is

• How do we learn the weights?

- Answer: Stochastic gradient descent
 - Requires that we compute the derivative of the training loss with respect to all weights

Where we are

Function f maps images to class scores

$$s=f(x;W)=Wx$$
 fis a deep CNN

Loss function maps class scores to "badness"

$$L_i = -\log\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$
 Cross-entropy loss

 $L = rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$ Data loss + regularization

want $abla_W L$ (gradient of L w.r.t. W, computed analytically)

Computation graphs

Forward pass: compute loss using current weights

Backwards pass: compute gradients of loss w.r.t. weights, then update the weights (backpropagation algorithm)

Backpropagation: a simple example

$$f(x,y,z) = (x+y)z$$

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$
 $q = x + y$ $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$
 $f = qz$ $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

 $egin{array}{lll} f(x)=e^x & o & \displaystylerac{df}{dx}=e^x & \ f(x)=ax & o & \displaystylerac{df}{dx}=-1/x^2 & \ f_c(x)=c+x & o & \displaystylerac{df}{dx}=-1/x^2 & \ f_c(x)=c+x & o & \displaystylerac{df}{dx}=1 & \ \end{array}$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

-

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$f(x) = e^x$	\rightarrow	$rac{df}{dx}=e^x$	$f(x)=rac{1}{x}$	\rightarrow	$rac{df}{dx}=-1/x^2$
$f_a(x) = ax$	\rightarrow	$rac{df}{dx}=a$	$f_c(x)=c+x$	\rightarrow	$rac{df}{dx}=1$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f_a(x) = ax \qquad o \qquad rac{df}{dx} = a \qquad f_c(x) = c + x \qquad o \qquad rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$f(x)=e^x$	\rightarrow	$rac{df}{dx}=e^x$	$f(x)=rac{1}{x}$	\rightarrow	$rac{df}{dx}=-1/x^2$
$f_a(x) = ax$	\rightarrow	$rac{df}{dx}=a$	$f_c(x)=c+x$	\rightarrow	$rac{df}{dx}=1$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$f(x) = e^x$	\rightarrow	$rac{df}{dx}=e^x$	$f(x)=rac{1}{x}$	\rightarrow	$rac{df}{dx}=-1/x^2$
$f_a(x) = ax$	\rightarrow	$rac{df}{dx}=a$	$f_c(x)=c+x$	\rightarrow	$rac{df}{dx}=1$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

add gate: gradient distributor

add gate: gradient distributor
Q: What is a max gate?

add gate: gradient distributor
max gate: gradient router

add gate: gradient distributormax gate: gradient routerQ: What is a mul gate?

add gate: gradient distributormax gate: gradient routermul gate: gradient switcher

Vectorized operations

Summary so far...

- neural nets will be very large: impractical to write down gradient formula by hand for all parameters
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Questions?