CS5670: Computer Vision
Noah Snavely

Backpropagation
I
“local gradient”
X 9, 0z
] o i
f . =

22 oL
Oy 0z

4 5 gradients

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

Readings

e Stochastic Gradient Descent &
Backpropagation
— http://cs231n.github.io/optimization-1/
— http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/

Announcements

* Project 4 (Stereo) due tomorrow, April 26,
2018, by 11:59pm

* Quiz 3 in class, Monday, 4/30, first 10 minutes
of class

* Final exam in class, May 9
— Will provide some study materials

Today

* How to train CNNs
— Backpropagation algorithm
— Best practices for training deep CNNs
— Data augmentation

Last time: neural networks

 Computation graph for a 2-layer neural
network

output layer
input layer
hidden layer

Neuron or unit

Last time: convolutional neural
networks

Image Maps
Input

FuIIy Connected

Convolutions
Subsampllng

i Cun et al. 1998 from CS231n 2017 Lecture 1

Last time: convolutional layers

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

Last time: convolutional neural

networks

preview:

RELU RELU RELU RELU RELU RELU

CONV 1CONV1 CONV lCONVl CONV lCONVl FC

bbby bbb |

= 1=l= |- |

S == o o

- =Sil= = (- | (B truck
&= 2= == B e

| - — alfplane
= = =B - e —

= N (= - <1l i
B =l = gl = &= r?orse
= =[] |] | i

' =il - |-

A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Output size:
(N - F) / stride + 1

eg.N=7 F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=233:\

n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

(recall:)
(N - F) /stride + 1

n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

7x7 output!

n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

in general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ..)). Shrinking too fast is not good, doesn’t work well.

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

CONV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONYV,
RelLU

24

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

N

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

<

I4

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*2 + 1 = 76 params (+1 for bias)
=> /6*10 =760

(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

e

112x112x64

224

224

—a 112
downsampling

112

Single depth slice

MAX POOLING

111112 | 4
5|6 | 7|8
312|110
112]3| 4

max pool with 2x2 filters
and stride 2

>

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

RELU RELU

CONV | CONV
.

RELU RELU

CONV

h| —

2
=
=
B
al
=
=
>
-

CONV

l coiwl

A EETER VR R

CONV

Y

RELU RELU

|

car
truck
aifrplane
ship

horse

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

Network Visualization

input (32x32x3) Activations:
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368

conv (32x32x16) Activations:
filter size 5x5x3, stnda

max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
R .-...E.

Activation Gradients:

Ilv-uuuuvlmlnl-l
Weight Gradients:
[LL il Lol | T L ¥

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Summary of CNNs

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm

Questions?

Bigger picture

* A convolutional neural network can be
thought of as a function from images to class
scores
— With millions of adjustable weights...

— ... leading to a very non-linear mapping from
images to features / class scores.

— We will set these weights based on classification
accuracy on training data...

— ... and hopefully our network will generalize to
new images at test time

Back to optimization

* Now we know what the structure of our
function from images -> class scores is

* How do we learn the weights?

* Answer: Stochastic gradient descent

— Requires that we compute the derivative of the
training loss with respect to all weights

Where we are

* Function f maps images to class scores
S = f(:l:, W) 2% fis adeep CNN

* Loss function maps class scores to “badness”

efyi
L; = —log () Cross-entropy loss

Zjefj

L = % sz\il L; + Zk sz Data loss + regularization

want VH/L (gradient of L w.r.t. W, computed analytically)

Computation graphs

f=Wz| |[Li= stéyz- max(0, s; — 8y, + 1)

X
\ @ s (scores)
| B ? |
w /
(®)
R(W)
>

Forward pass: compute loss using current weights

<

Backwards pass: compute gradients of loss w.r.t. weights, then update the weights
(backpropagation algorithm)

Backpropagation: a simple example

flz,y,2) = (z +y)z

Backpropagation: a simple example

flz,y,2) = (z +y)z
eg.x=-2,y=5z=-4

12

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

f

12

_ 9 . Oq
g=+vy %—1,%—1
of of
f:qz Fq:zaazq
of Of of

Want: 5z Dy’ 02

Backpropagation: a simple example

PN IO

eg.x=-2,y=95,z=+4

— dq dq
g=z+y =15 =1

- of of of
f_qz a_q_z’ Bz_q

- Oof of of
Want: 5-, 5y B2

Backpropagation: a simple example X -2
q 3
f(z,9,2) = (z +y)z D@

eg.x=-2,y=95,z=-4

_ dq dq /
Oz By 5
of _ of of

f=qz 5 =25 — 4
of oOf Of

Want: 5-, 9 B2

Backpropagation: a simple example

flz,y,2) = (¢ +y)z
eg.x=-2,y=5z=-4

F-12

_ 9q 4 0q _
q=+Y 5—1,5—1
of _ _ of _
f=gqz q %79 — 4
of of Oof

Want: oz By Oz

of
0z

Backpropagation: a simple example

flz,y,2) = (¢ +y)z
eg.x=-2,y=5z=-4

_ 9q 4 0q _
q=+Y 5—1,5—1
of _ _ of _
f=gqz q %79 — 4
of of Oof

Want: oz By Oz

f-12
1
z -4
3 ‘K
of
0z

Backpropagation: a simple example

PN IO

eg.x=-2,y=95,z=+4

of of -

- Oof of of
Want: 5-, 5y B2

Backpropagation: a simple example

PSR G

eg.x=-2,y=95,z=+4

_ oq dq
of of 3
f:qz a—q:z,azq q

. OoF of of
Want: 5-, 3y’ 02

Backpropagation: a simple example | x -2

fl@,9,2) = (¢ +9)2 D@

e.g.x=—2,y=5,Z=_4

o dq dq
B of _ _ of _ Chain rule:]
f=gqz o — o — 1 Of 0f oq
Want: e Y %
ant. oz’ Oy’ Oz Upstéam Lgcal

gradient gradient

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ 9q . Og _
g=z+Y g—l,@—l
of of
f=gqz 9 *08 9
of of of

Want: 9z Dy’ 02

Chain rule:

°F . 9 B

Oy d0q Oy
2

\
Upstream Local
gradient gradient

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4

of of
f=gqz By i 9
. Of of of
Want: e Ty Be

Chain rule:

of _ 9f &9
3y—/0q<9y

Upstream
gradient

\
Local
gradient

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-+4

_ 9 . Og _
qg=z+Y g—l,%—l
of of
f=gqz 0= %3 =4
of of of

Want: oz By’ 0z

Chain rule:
of _ of %
or O0q Oz

- \
Upstream Local
gradient gradient

Backpropagation: a simple example
f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

g=z+y =173

Chain rule:

gy =T
of of
f=gqz Rl
. Of of 0of
Want: oz Oy’ 0z

of Of oq
dr ~ Oq Oz

2
Upstream
gradient

X
Local
gradient

“local gradient”

“local gradient”

Z

oL
0z

gradients

“local gradient”

Z

oL
0z

gradients

“local gradient”

OL
0z

gradients

“local gradient”

Z

oL
0z

gradients

Another example:

w0
x0

wi
x1

w2

f(wam) —

1

1.4 e —(wozo+wizy+wy)

®
®

®

®

Another example:

x0 -
wl -
X1 =

w2 -

f('w,:z:) =

1

1 4+ e~ (wozo+wizy+wy)

1

T 1 + e (wozotwizi+wr)

Another example: f(w,)

Jle)= & - g =7 - f(z) = % — % = —1/a?
fo(@) = az - Z—i—a f(z)=c+=z — %:1

Another example:

f(w,z)

00 % -1.00 0.37 37 0.73
1 @ @ @ : @ 1,00
T - 1 df 2
B N df
el / 1 fc(:r)—C'f‘w — d—m‘—l

1

1 4+ e (wozmotwizy+wy)

Another example:

1

f(w,z)

1 4+ e (wozmotwizy+wy)

Upstream Local

gradient gradient
> 4
(1.00)(§5-5) = —0.53
df _ . df
% = f((l?) . % —1/272
df . df
o fe(%) = updream s o

gradient

Another example:

f(w,z)

1

& 1.} e—(woxo+w1x1+w2)

(TR

Another example:

f(w,z)

d
e | t00-1 4 4 1ye?
Z—iza f(z)=c+z - %:1

1

1 4+ e (wozmotwizy+ws)

Upstream Local
gradient gradient
.
(—0.53)(1) = —0.53

\e@ 053 _/ -053

100 N1037 3\ 137 |47 073

1.00

Another example:

f(w,z)

1

1 4+ e (wozmotwizy+ws)

GV 00 2N 037

+1 1.37 /17)(\ 0.73

Jle)= & — g = o
j.02) =nx — = a

@ 053

053 _J 1.00

Another example:

1

f(w,z)

1 4+ e (wozmotwizy+ws)

Upstream Local
gradient gradient
~ ¢

(—0.53)(e~!) = —0.20

1.00 @ ~1oo@ 0.37 /:1\ 1.37 /17)(\ 0.73
ANt -020\& -0.53 053 _J 100

B df T 1 df
flz) =e a f(z) == = o
fo(z) = az Z—£=a f{z) =861 -

Another example:

f(w,z)

1

1 4+ e (wozmotwizy+ws)

FoN. B N NV LR\
oy -053L+1/ -0.53 \1{)(/ 1.00

f(z)=e” = g il f(z) = % = g
j.0x) =nx — Z—i—a fzx)=c+z S

1

Another example: flw,z) =

1 4+ e~ (wozo+wizy+w;y)

Upstream Local
gradient gradient

~ ¢
(—0.20)(—1) = 0.20

x0 -1.00
4.00

wl 300
1.00 /% -1.00 0.37 1.37 0.73
x1 -2.00 0.20 @ -0.20 \e@ -0.53 @ -0.53 @ 1.00
w2 -3.00
i df . 1 df 2
flz)=e 5 e flz)=— 3 = ="1/z
d
fo(z) = az o d—i—a f(x)=c+= - %_1

Another example:

w2 -3.00 A

f(w,z)

1

1 4+ e (wozmotwizy+wy)

4.00

1.00] A7) 100 2N 037 N 137 47N 073

020] _/

-0.20 @ 053 __/ 053 \J

1.00

1

& -1 6—(w0.r0+w1.r1+w2)

Another example: flw,z)

w0 2.00

[upstream gradient] x [local gradient]
[0.2] x[1]=0.2
[0.2] x [1] = 0.2 (both inputs!)

ws_@ -100/8;\ 037 /1) 137 fﬁx\ 0.73
-020\9 053 __/ 053 \J 100

1

1 4+ e~ (wozo+wizy+w;y)

Another example: flw,z) =

1.00 @ -1oofe)‘(\ 037 7). 137 f1;x\ 0.73
020 _/ -020 _9 053 __/ 053 \J 100

0.20

Jlal=e&" — g = o flz) = % - % = —1/z°
1.(z) =nx - Z—i—a f(x)=c+= - %_1

Another example: flw,z)

w0 2.00

0.40

wl -3.00

x1

w2 -3.00
0.20

f(z) =e* - <
1.(z) =nx — df

1

T d £ e —(wozo+wiz+w;)

[upstream gradient] x [local gradient]
x0:[0.2] x[2] = 0.4
wO0: [0.2] x [-1] =-0.2

1.00 _@'1\ 2100 /2 N\ 037 /'l\ 1.37 fl/\ 0.73
020\ 020 P05\ oss Y w0
1 df
d
f(x)=c+= — % =

Patterns in backward flow

add gate: gradient distributor

Patterns in backward flow

add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

Q: What is a mul gate?

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

Gradients add at branches

Vectorized operations

4096-d R f(x) = max(o,x) — 4096-d
input vector — | (elementwise) ——— output vector

Vectorized operations oL _ |of|aL
oxr |Ox W

Jacobian matrix

4096-d —1 f(x) = max(0,x) ——— 4096-d

input vector — | (elementwise) —— output vector
Q: what is the
size of the

Jacobian matrix?

Vectorized operations oL _ |of|aL
or B_wgf_

Jacobian matrix

4096-d — 1 f(x) =max(0,x) —— 4096-d

input vector — (elementwise) —— output vector
Q: what is the
size of the

Jacobian matrix?
[4096 x 4096!]

Vectorized operations

4096-d —
input vector .

Q: what is the
size of the

Jacobian matrix?
[4096 x 4096!]

f(x) = max(0,x)
(elementwise)

oL
ox

4096-d

__|9f
|0z

oL
of

Jacobian matrix

output vector

Q2: what does it
look like?

Summary so far...

neural nets will be very large: impractical to write down gradient formula
by hand for all parameters

backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all
iInputs/parameters/intermediates

iImplementations maintain a graph structure, where the nodes implement
the forward() / backward() API

forward. compute result of an operation and save any intermediates
needed for gradient computation in memory

backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs

Questions?

