
Backpropagation

CS5670: Computer Vision
Noah Snavely

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung

http://vision.stanford.edu/teaching/cs231n/



Readings

• Stochastic Gradient Descent & 
Backpropagation

– http://cs231n.github.io/optimization-1/

– http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/


Announcements

• Project 4 (Stereo) due tomorrow, April 26, 
2018, by 11:59pm

• Quiz 3 in class, Monday, 4/30, first 10 minutes 
of class

• Final exam in class, May 9

– Will provide some study materials



Today

• How to train CNNs

– Backpropagation algorithm

– Best practices for training deep CNNs

– Data augmentation



Last time: neural networks

• Computation graph for a 2-layer neural 
network 

Neuron or unit



Last time: convolutional neural 
networks



Last time: convolutional layers



Last time: convolutional neural 
networks































https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Summary of CNNs



Questions?



Bigger picture

• A convolutional neural network can be 
thought of as a function from images to class 
scores

– With millions of adjustable weights… 

– … leading to a very non-linear mapping from 
images to features / class scores.

– We will set these weights based on classification 
accuracy on training data…

– … and hopefully our network will generalize to 
new images at test time



Back to optimization

• Now we know what the structure of our 
function from images -> class scores is

• How do we learn the weights?

• Answer: Stochastic gradient descent

– Requires that we compute the derivative of the 
training loss with respect to all weights



Where we are

f is a deep CNN 

Cross-entropy loss

Data loss + regularization

• Function f maps images to class scores

• Loss function maps class scores to “badness” 

(gradient of L w.r.t. W, computed analytically)



Computation graphs

Forward pass: compute loss using current weights 

Backwards pass: compute gradients of loss w.r.t. weights, then update the weights
(backpropagation algorithm)































































































Questions?


