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 Convolutional neural networks

— http://cs231n.github.io/convolutional-networks/
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http://cs231n.github.io/convolutional-networks/

Announcements

* Project 4 (Stereo) due this Thursday, April 26,
2018, by 11:59pm

* Quiz 3 in class, Monday, 4/30, first 10 minutes
of class

* Final exam in class, May 9
— Will provide some study materials



Today

e Neural networks
e Convolutional neural networks

* Next time: how to train neural networks
(stochastic gradient descent via
backpropagation)



Neural networks

(Before) Linear score function: f = Wz



Neural networks

(Before) Linear score function: f = Wzx
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)



Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

X Wl h WQ S

3072 100 10
W 1 7 2
10 x 100 matri
(100 x 3072 matrix) h (10 x matrix)

100D intermediate
vector



Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

X| Wiy |h| Wy |'s

3072 100 10

* Total number of weights to learn:
3,072 x 100 + 100 x 10 = 308,200



Neural networks

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)
or 3-layer Neural Network

f=Ws max(O, Wy maX(Oa Wlw))



Writing a 2-layer neural net

# receive W1,W2,bl,b2 (weights/biases), X (data)

# forward pass:

hl = #... function of X,W1,bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:

dscores = #...

dhl,dw2,db2 = #. .. We’'ll talk about this

dwl,dbl = #... backwards pass later.
Involves pushing

gradients backwards



Neural networks

* Very coarse generalization:

— Linear functions chained together and separated
by non-linearities (activation functions), e.g. “max”

f = W3 maX(O, W max(O, Wlx))

— Why separate linear functions with non-linear
functions?

— Very roughly inspired by real neurons




Activation functions
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Neural network architecture

 Computation graph for a 2-layer neural
network

output layer
input layer
hidden layer

Neuron or unit



Neural networks: Architectures

output layer
input layer
hidden layer

“2-layer Neural Net”\

“1-hidden-layer Neural Net”
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“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

* Deep networks typically have many layers and
potentially millions of parameters



Deep neural network
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* Inception network (Szegedy et al, 2015)

e 22 layers



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
—> 1 [O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



Example feed-forward computation of a neural network
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‘ output layer

hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation funct

X = np.random.randn(3, 1) # random input vector of three

hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer a
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden lay ‘
out = np.dot(W3, h2) + b3 # output neuron (1



Summary

- We arrange neurons into fully-connected layers

- The abstraction of a layer has the nice property that it
allows us to use efficient vectorized code (e.g. matrix
multiplies)

- Neural networks are not really neural



Questions?



Convolutional neural networks
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A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20x20 cadmium sulfide photocells to produce a 400-pixel

image.
1 fw-z4+56>0
. flz) = :
recognized 0 otherwise
letters of the alphabet Z
update rule:

wi(t + 1) = w;i(t) + a(d; — y;(t))x;a

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0




A bit of history...

recognizable math

input output
pattern pattern p
error
E,

Rumelhart et al., 1986: First time back-propagation became popular



A bit of history...
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[Hinton and Salakhutdinov 2006] |
. i W, 500 i
Reinvigorated research in 3 ==
Deep Learning E W2 “ [Cow ] o0 000
g | |

i T |
Iz |

““““l';r;;r_a_il;i_;g:-“““‘l RBM:-initialized autoencoder Fine-tuning with backprop

lllustration of Hinton and Salakhutdinov 2006 by Lane
Meclntosh, copyright CS231n 2017

Hinton and Salakhutdinov. Reducing the Dimensionality of Data with
Neural Networks. Science, 2016.



A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]
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First strong results B
pre-training
Acoustic Modeling using Deep Belief Networks -
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Deep Neural
Network

rt t 1
- . . . Spectrogram
Imagenet classification with deep convolutional _ |
neural networks lllustration of Dahl et aéég;‘?nbgoﬁa;e Mclntosh, copyright
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

Ly

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”



Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.



Fast-forward to today: ConvNets are everywhere

.....

¥ g
-
copyright Clement Farabet, 2012.

Figures

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with
permission. . ) Reproduced with permission. [ Far abet et a/, 5 20 1 2 ]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]



¥

self-driving cars

Photo by Lane Mcintosh. Copyright CS231n 2017.

Fast-forward to today: ConvNets are everywhere

3 This image by GBPublic_PR is
X licensed under CC-BY 2.0

NVIDIA Tesla line

(these are the GPUs on rye01.stanford.edu)

Note that for embedded systems a typical setup
would involve NVIDIA Tegras, with integrated
GPU and ARM-based CPU cores.



Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

frame: t-3 t-2

“Smearine” . .
“enemy+diver” - .

[Guo et al. 2014]

t-1

t

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,
and Xiaoshi Wang, 2014. Reproduced with permission.



Fast-forward to today: ConvNets are everywhere

Malignant Malignant
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[Levy et al. 2016]
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[Ciresan et al.]




alat

at related |mage
Captioning

No errors

[Vinyals et al., 2015]
[Karpathy and Fei-Fei,
2015]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

All images are CCO Public domain:

- hitps://pixabayv.com/en/woman-female-model-porirait-adult-983967/
T e 5 https://pixabay com/en/handstand-lake-meditation-496008/

A man riding a wave on A cat sitting on a A woman standing on a hites//oixabay conyen/baseball-laver-shortsioo-infield: 1045263/

top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Justin Johnson using Neuraltalk2




Qriginal image is CCO public domain

Starry Night and Tree Roots by Van Gogh are in the public domain
Bokeh image is in the public domain Gatys et al, “Image Style Transfer using Convolutional Neural Networks”, CVPR 2016

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach
8 RYIE R Pe D Pt PP Gatys et al, “Controlling Perceptual Factors in Neural Style Transfer”, CVPR 2017

from a blog post by Google Research. Stylized images copyright Justin Johnson, 2017;
reproduced with permission




Convolutional neural networks

* Version of deep neural networks designed for
signals

— 1D signals (e.g., speech waveform)




Motivation — Feature Learning



Recap: Life Before Deep Learning
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Input Extract Concatenate into  Linear
Pixels Hand-Crafted a vector X Classifier
Features

Figure: Karpathy 2016



Why use features?
Why not pixels?

airplane %%\ V.:'&'—:
automobile E F-
bird fmB e FEREE
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flzi, W,b) = Wz; +b

Q: What would be a
very hard set of classes
for a linear classifier to
distinguish?

(assuming x = pixels)

Slide from Karpathy 2016



Linearly separable classes

car classifier

airplane classifier

\

deer classifier f(wZ) W, b) — sz + b



The last layer of (most) CNNs are
linear classifiers

This piece Is just a linear classifi’e-r)

A 4 A g Ay B 7 N T
W W
Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable



Example: Visualizing AlexNet in 2D with t-SNE
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(c) DeCAF; (d) DeCAFg

(2D visualization using t-SNE) [Donahue, “DeCAF: DeCAF: A Deep Convolutional ...”, arXiv 2013]



Convolutional neural networks

* Layer types:
— Fully-connected layer
— Convolutional layer
— Pooling layer



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation

Wax

1 —> —> 4 [O

3072 10 x 3072

weights 10



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
— 1 [O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



Convolution Layer

32x32x3 image

ox5x3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




ConVO|UtIO n Laye r Filters always extend the full
. depth of the input volume

32x32x3 image /
oxox3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer

32x32x3 image

ox5x3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Number of weights: 5x5x3+1=76

(vs. 3072 for a fully-connected layer)
(+1 for bias)



Convolution Layer
___— 32x32x3 image

ox5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wiz+b

™~~~ 1 number:




Convolution Layer

activation map

___— 32x32x3 image

5x5x3 filter /
=

=0 i
convolve (slide) over all
spatial locations
32 28




Convolution Layer

&1

I

—

V
——0

32

consider a second, green filter

32x32x3 Image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

4

o

28



For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

(total number of parameters: 6 x (75 + 1) = 456)



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6
ox5x3
filters

28

32




Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
ox5x3
filters

28

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONV,
RelLU

24



Preview

[Zeiler and Fergus 2013]

Low-level
features

Mid-level
features

Visualization of VGG-16 by Lane MclIntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

VGG-16 Convi_1

A 4

High-level
features

Linearly

»| separable >
classifier




\ PECINEERDNIITN NESHESAETISESRAERG
one filter => _
one activation map example 5x5 filters
= (32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

Sflx,y1* glx,y] = i if[n.,nzl-g[x—n.,y—nzl

elementwise multiplication and sum of
.H.. a filter and the signal (image)
Figure copyright Andrej Karpathy.

ny=—c0 ny=—oc0




preview:

RELU RELU RELU RELU RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

bl bbb by
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A closer look at spatial dimensions:

activation map

___— 32x32x3 image
5x5x3 filter

V
= .

convolve (slide) over all
spatial locations

32 28




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

2

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.



Output size:
(N - F) / stride + 1

eg.N=7 F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=233:\



n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

(recall:)
(N - F) /stride + 1




n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

7x7 output!




n practice: Common to zero pad the border

0O(0|0|0O(0O]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

in general, common to see CONYV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3




Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ..)). Shrinking too fast is not good, doesn’t work well.

32

32

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

CONV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONYV,
RelLU

24



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

N



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

<

I4




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N



Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*2 + 1 = 76 params  (+1 for bias)
=> /6*10 =760




(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56



Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

e

112x112x64

224

224

—a 112
downsampling

112



Single depth slice

MAX POOLING

111112 | 4
5|6 | 7|8
312|110
112 ]3| 4

max pool with 2x2 filters
and stride 2

>




Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

RELU RELU

CONV | CONV
.

RELU RELU

CONV

h| —

2
=
=
B
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CONV

l coiwl

A EETER VR R
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RELU RELU
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truck
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[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

Network Visualization

input (32x32x3) Activations:
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368

conv (32x32x16) Activations:
filter size 5x5x3, stnda

max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
R .-...E.

Activation Gradients:

Ilv-uuuuvlmlnl-l
Weight Gradients:
[ LL il Lol | T L ¥

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[(CONV-RELU)*N-POOL?1*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm



Next time: Backpropagation

# receive W1,W2,bl,b2 (weights/biases), X (data)

# forward pass:

hl = #... function of X,W1,bl

scores = #... function of hl,W2,b2

loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dhl,dw2,db2 = #...
dwl,dbl = #...

This is the backwards
pass. We compute it
with backpropagation



Questions?



