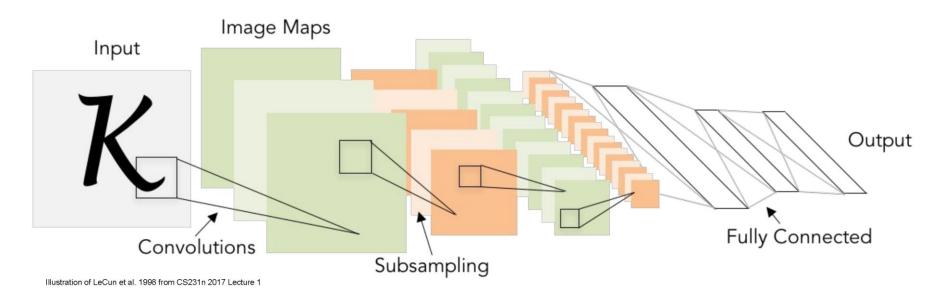
CS5670: Computer Vision Noah Snavely

Neural networks and convolutional neural networks



Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Readings

- Neural networks
 - <u>http://cs231n.github.io/neural-networks-1/</u>
 - <u>http://cs231n.github.io/neural-networks-2/</u>
 - <u>http://cs231n.github.io/neural-networks-3/</u>
 - <u>http://cs231n.github.io/neural-networks-case-study/</u>
- Convolutional neural networks

– <u>http://cs231n.github.io/convolutional-networks/</u>

Announcements

 Project 4 (Stereo) due this Thursday, April 26, 2018, by 11:59pm

 Quiz 3 in class, Monday, 4/30, first 10 minutes of class

- Final exam in class, May 9
 - Will provide some study materials

Today

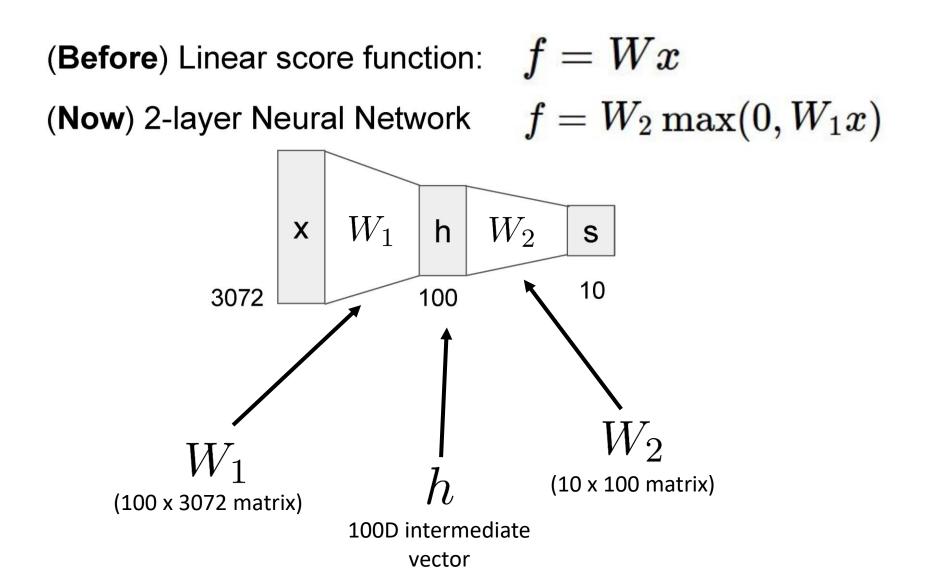
- Neural networks
- Convolutional neural networks

 Next time: how to train neural networks (stochastic gradient descent via backpropagation)

(**Before**) Linear score function: f = Wx

(**Before**) Linear score function: (**Now**) 2-layer Neural Network

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$



(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x W_1 h W_2 s$ 3072 10

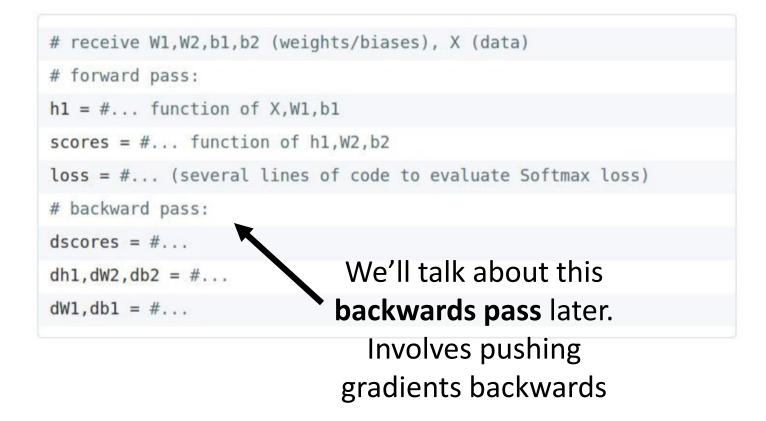
Total number of weights to learn:
 3,072 x 100 + 100 x 10 = 308,200

 $f - W_{\mathcal{T}}$ (Before) Linear score function: (Now) 2-layer Neural Network or 3-layer Neural Network

$$f = W_2 \max(0, W_1 x)$$

$$f=W_3\max(0,W_2\max(0,W_1x))$$

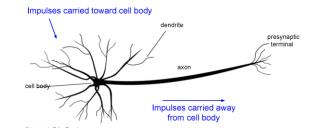
Writing a 2-layer neural net

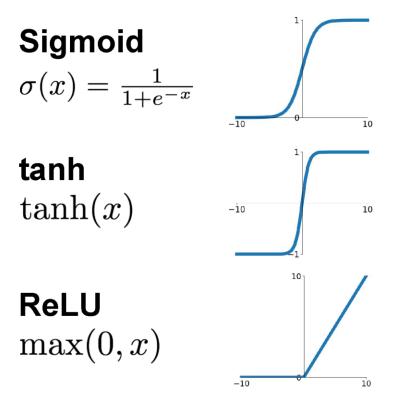


- Very coarse generalization:
 - Linear functions chained together and separated by non-linearities (*activation functions*), e.g. "max"

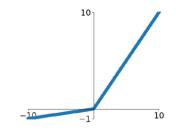
$$f=W_3\max(0,W_2\max(0,W_1x))$$

- Why separate linear functions with non-linear functions?
- Very roughly inspired by real neurons

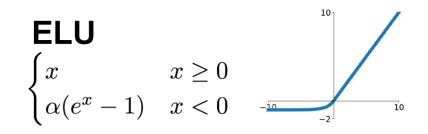




Leaky ReLU $\max(0.1x, x)$

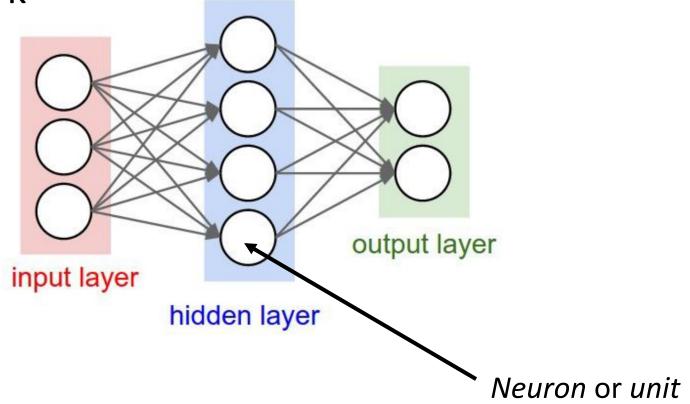


 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

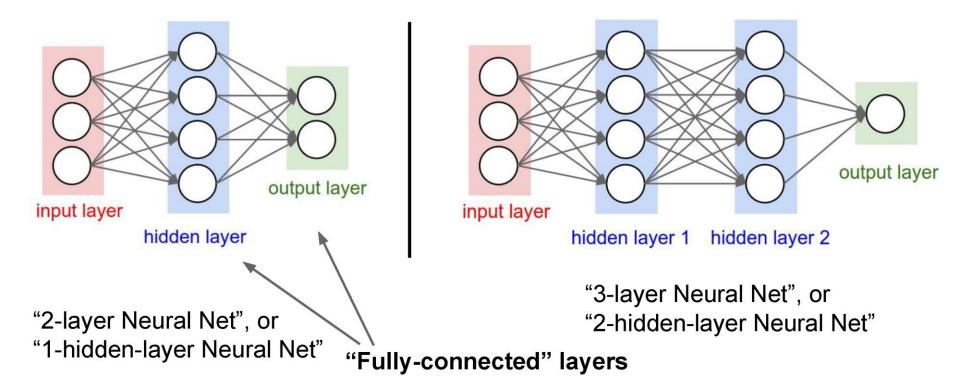


Neural network architecture

 Computation graph for a 2-layer neural network

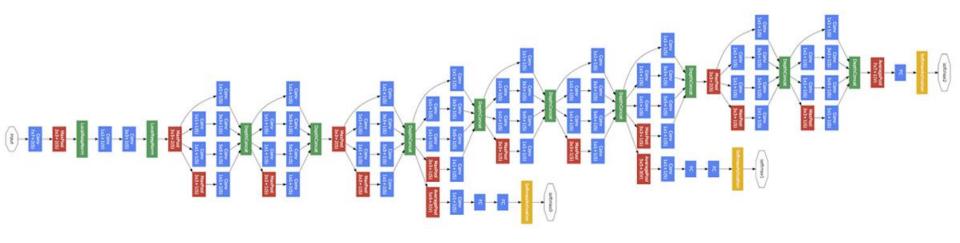


Neural networks: Architectures



• **Deep** networks typically have many layers and potentially millions of parameters

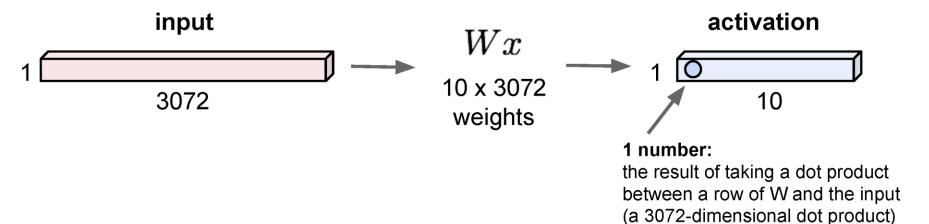
Deep neural network



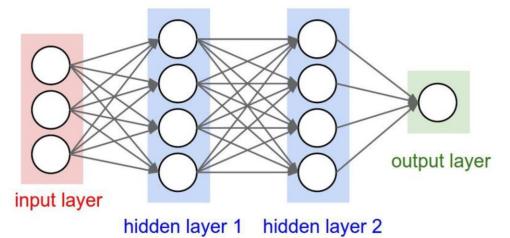
- Inception network (Szegedy et al, 2015)
- 22 layers

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1



Example feed-forward computation of a neural network



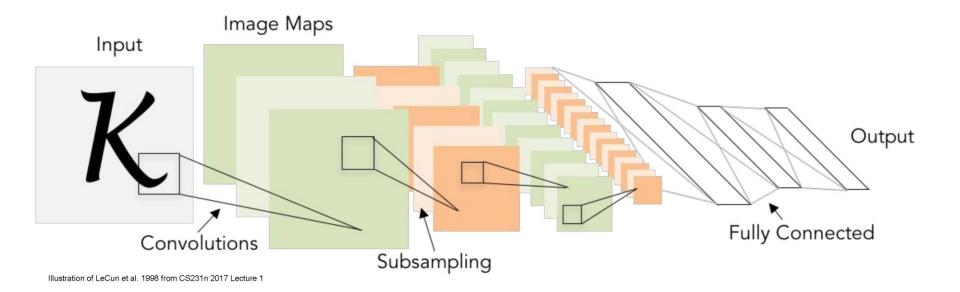
forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Summary

- We arrange neurons into fully-connected layers
- The abstraction of a **layer** has the nice property that it allows us to use efficient vectorized code (e.g. matrix multiplies)
- Neural networks are not really neural

Questions?

Convolutional neural networks



A bit of history...

The Mark I Perceptron machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image. b > 0

recognized letters of the alphabet

$$(x) = \begin{cases} 1 & \text{if } w \cdot x + \\ 0 & \text{otherwise} \end{cases}$$

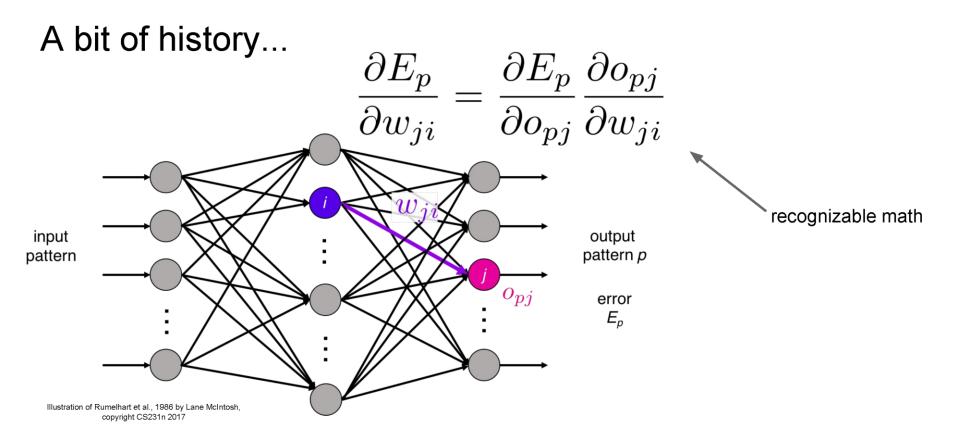
update rule:

$$x_0$$
 w_0
axon from a neuron w_0x_0
dendrite w_0x_0
 y_0x_1 $f\left(\sum_{i}w_ix_i+b\right)$
 w_1x_1 v_ix_i+b f output axon
activation
function

Frank Rosenblatt, ~1957: Perceptron

 $w_i(t+1) = w_i(t) + \alpha(d_i - y_i(t))x_{j,i}$

This image by Rocky Acosta is licensed under CC-BY 3.0



Rumelhart et al., 1986: First time back-propagation became popular

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

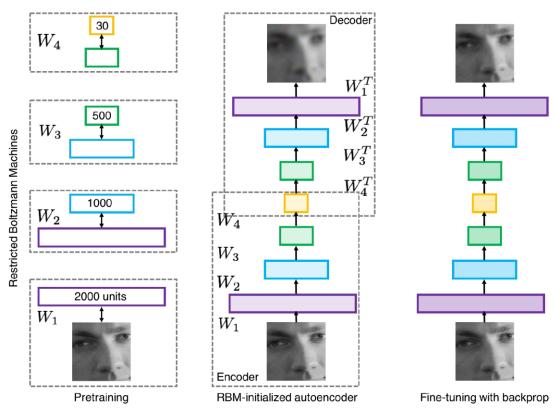
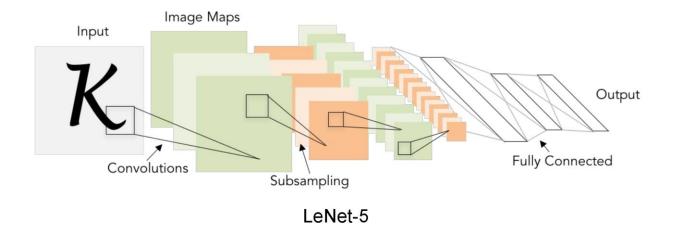


Illustration of Hinton and Salakhutdinov 2006 by Lane McIntosh, copyright CS231n 2017

Hinton and Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. *Science*, 2016.

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]



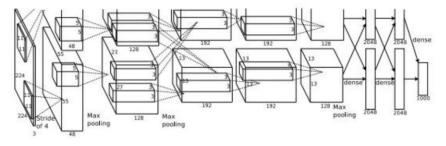
First strong results

Acoustic Modeling using Deep Belief Networks

Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012



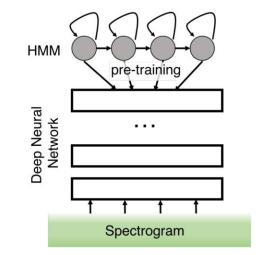


Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks

[Krizhevsky, Sutskever, Hinton, 2012]

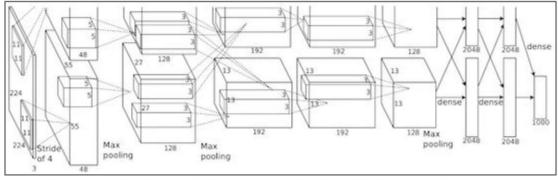


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

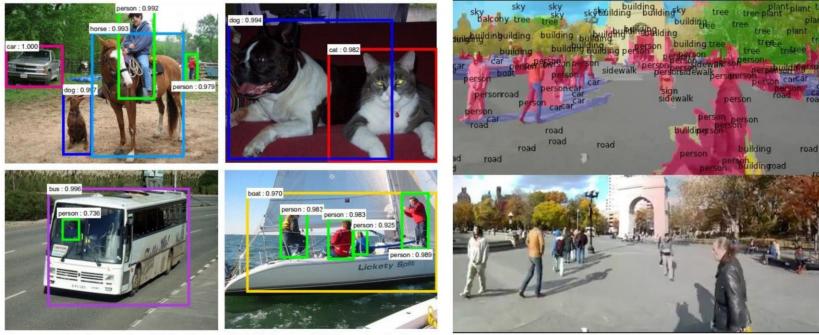
"AlexNet"

Classification

Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Detection



Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission. [Faster R-CNN: Ren, He, Girshick, Sun 2015] Figures copyright Clement Farabet, 2012. Reproduced with permission.

Segmentation

[Farabet et al., 2012]

road

road

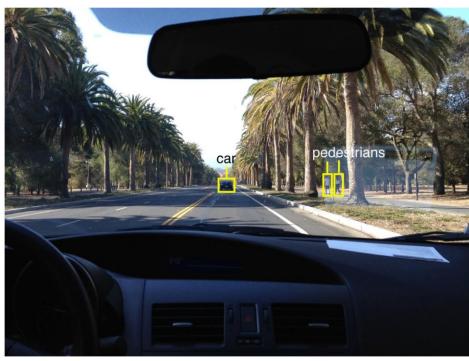


Photo by Lane McIntosh. Copyright CS231n 2017.

self-driving cars

NVIDIA Tesla line (these are the GPUs on rye01.stanford.edu)

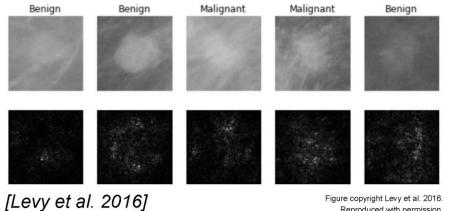
Note that for embedded systems a typical setup would involve NVIDIA Tegras, with integrated GPU and ARM-based CPU cores.

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane McIntosh.

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis, and Xiaoshi Wang, 2014. Reproduced with permission.



Reproduced with permission.

[Dieleman et al. 2014]

From left to right: public domain by NASA, usage permitted by ESA/Hubble, public domain by NASA, and public domain.

[Sermanet et al. 2011] [Ciresan et al.]

Photos by Lane McIntosh. Copyright CS231n 2017.

No errors

Minor errors

Somewhat related

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

A woman standing on a beach holding a surfboard

Image Captioning

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

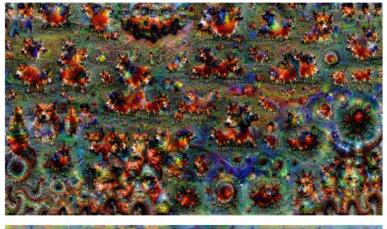
A cat sitting on a

A cat sitting on a suitcase on the floor

All images are CC0 Public domain: https://bixabav.com/en/luqage-antique-cat-1643010/ https://bixabav.com/en/luqage-antique-cat-1643010/ https://bixabav.com/en/suft-wave-summer-sport-liforal-1668716/ https://bixabav.com/en/woman-female-model-portrait-adult-983967/ https://bixabav.com/en/handstand-lake-meditation-496008/ https://bixabav.com/en/haseball-blaver-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

A man riding a wave on top of a surfboard



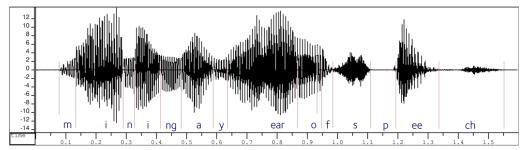
Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach from a <u>blog post</u> by Google Research.

Original image is CCO public domain Starry Night and Tree Roots by Van Gogh are in the public domain <u>Bokeh image</u> is in the public domain Stylized images copyright Justin Johnson, 2017; reproduced with permission

Gatys et al, "Image Style Transfer using Convolutional Neural Networks", CVPR 2016 Gatys et al, "Controlling Perceptual Factors in Neural Style Transfer", CVPR 2017

Convolutional neural networks

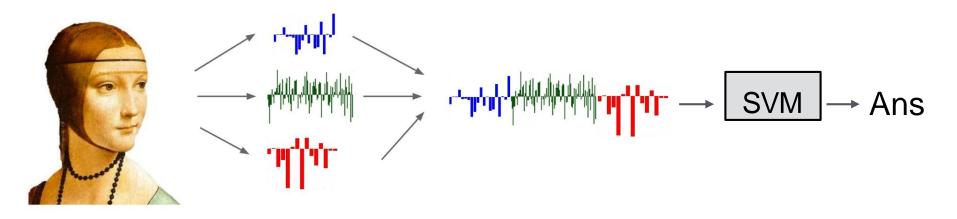
- Version of deep neural networks designed for signals
 - 1D signals (e.g., speech waveform)



- 2D signals (e.g., image)

Motivation – Feature Learning

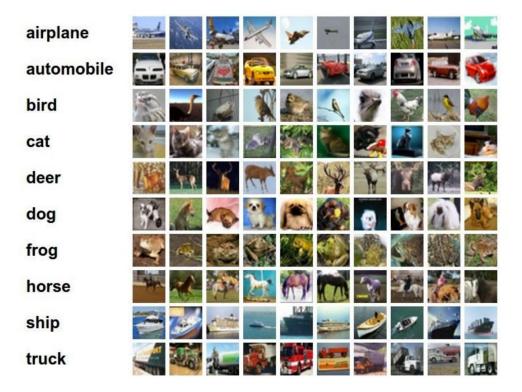
Recap: Life Before Deep Learning



Input Extract Concatenate into Linear Pixels Hand-Crafted a vector **x** Classifier Features

Figure: Karpathy 2016

Why use features? Why not pixels?



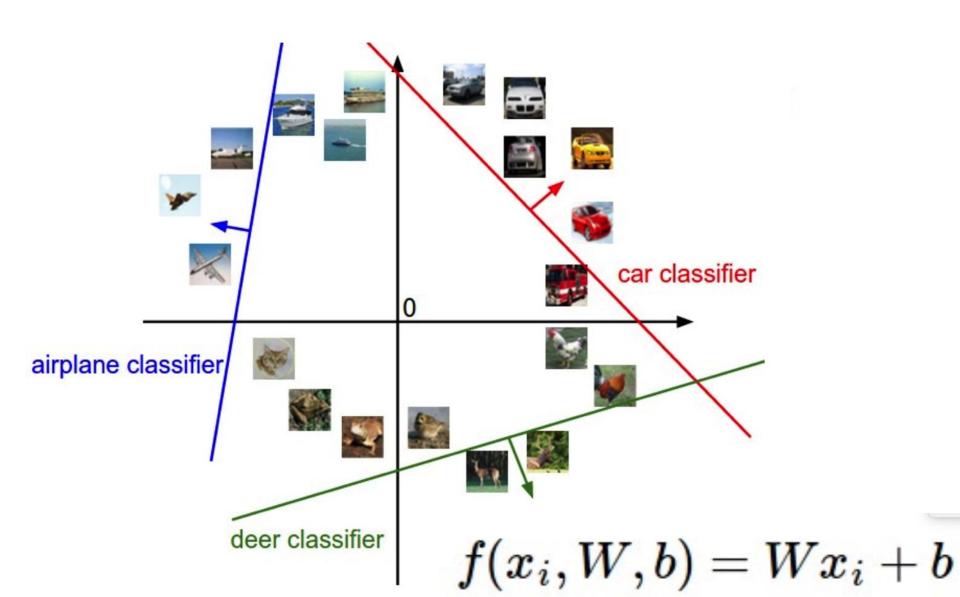
$$f(x_i, W, b) = Wx_i + b$$

Q: What would be a very hard set of classes for a linear classifier to distinguish?

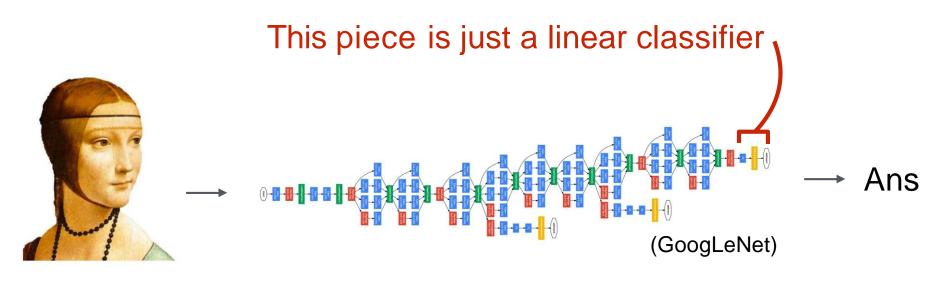
(assuming x = pixels)

Slide from Karpathy 2016

Linearly separable classes



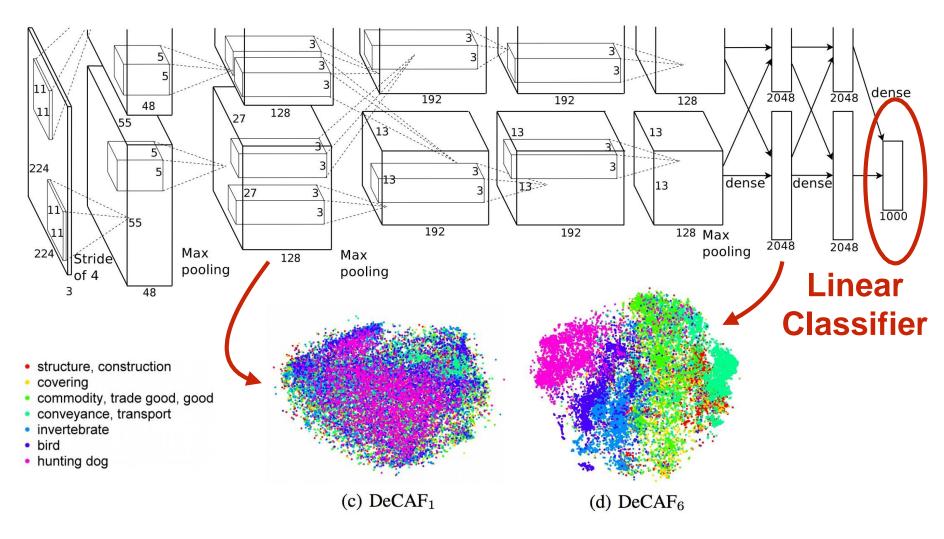
The last layer of (most) CNNs are linear classifiers



InputPerform everything with a big neuralPixelsnetwork, trained end-to-end

Key: perform enough processing so that by the time you get to the end of the network, the classes are linearly separable

Example: Visualizing AlexNet in 2D with t-SNE



(2D visualization using t-SNE)

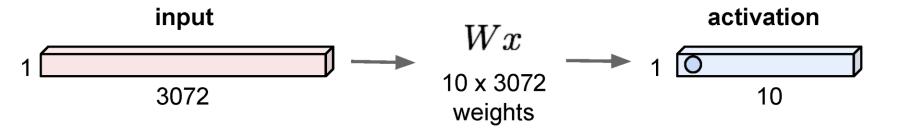
[Donahue, "DeCAF: DeCAF: A Deep Convolutional ...", arXiv 2013]

Convolutional neural networks

- Layer types:
 - Fully-connected layer
 - Convolutional layer
 - Pooling layer

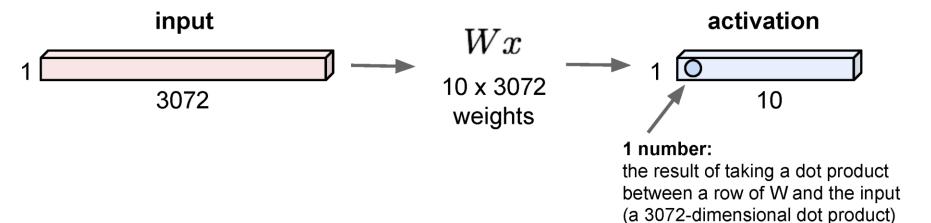
Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

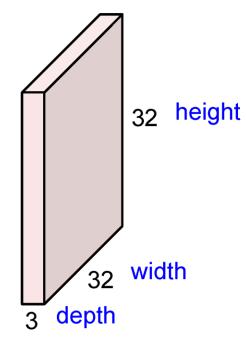


Fully Connected Layer

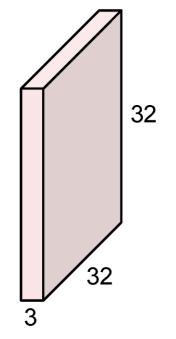
32x32x3 image -> stretch to 3072 x 1



32x32x3 image -> preserve spatial structure



32x32x3 image



5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

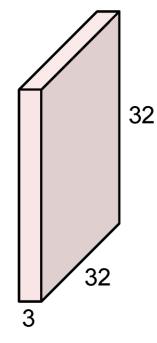
Filters always extend the full depth of the input volume

32x32x3 image 32 32 3

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

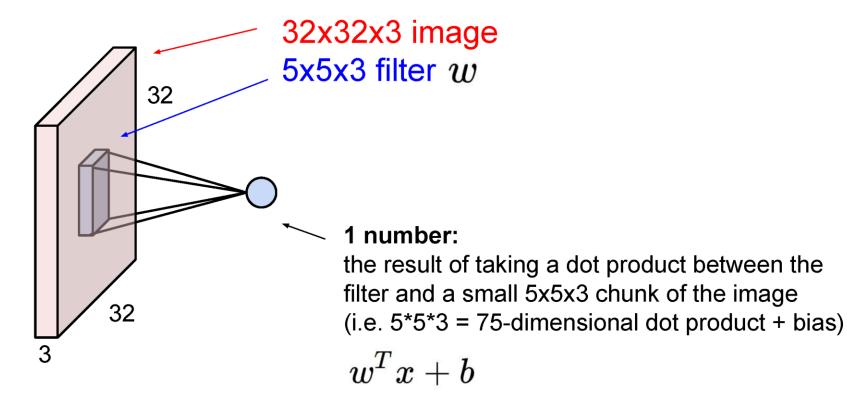
32x32x3 image

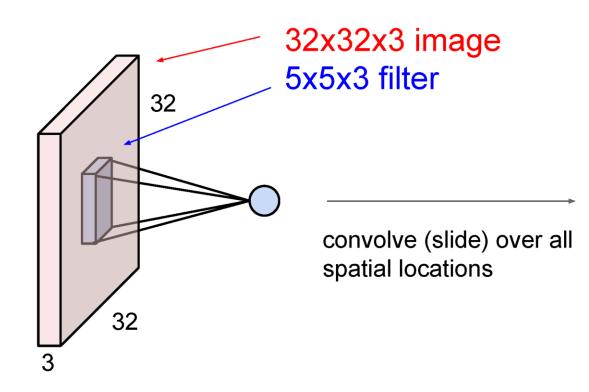


5x5x3 filter

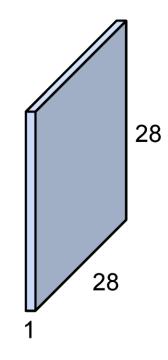
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Number of weights: $5 \times 5 \times 3 + 1 = 76$ (vs. 3072 for a fully-connected layer) (+1 for bias)





activation map



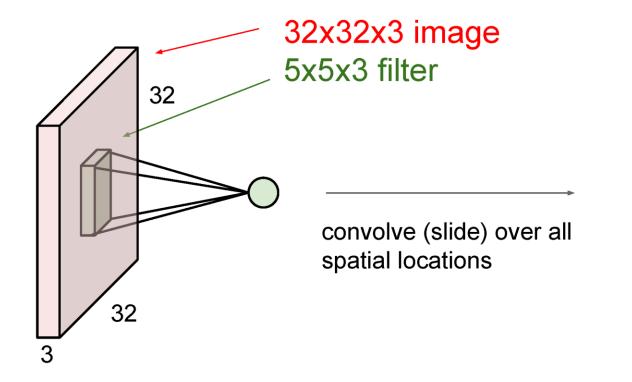
consider a second, green filter

activation maps

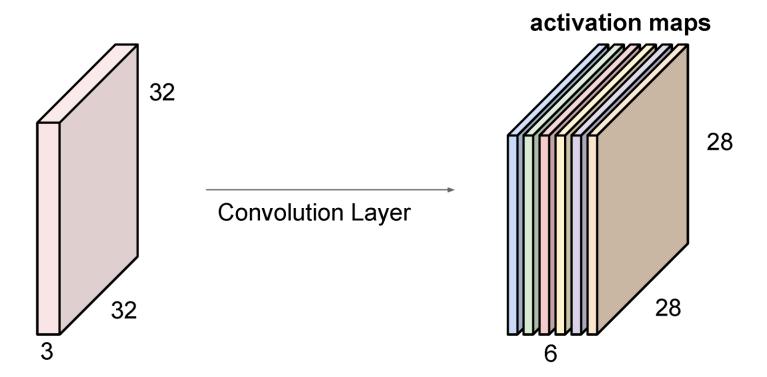
28

28

Convolution Layer



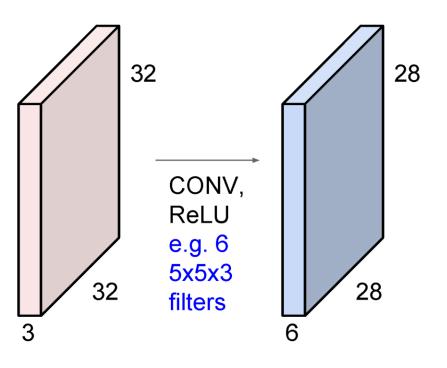
For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



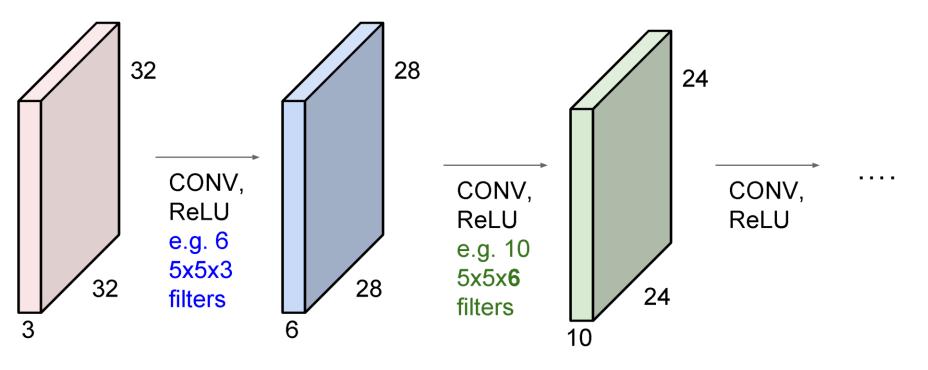
We stack these up to get a "new image" of size 28x28x6!

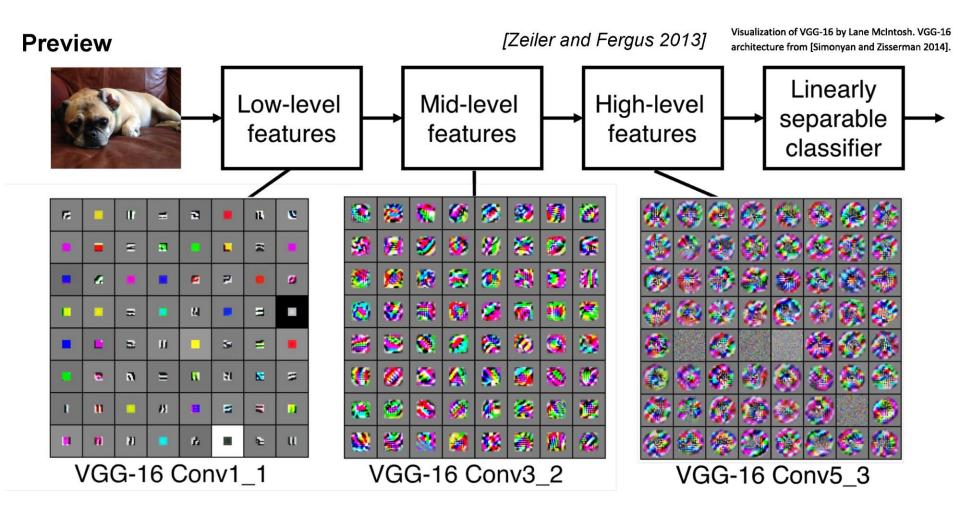
(total number of parameters: $6 \times (75 + 1) = 456$)

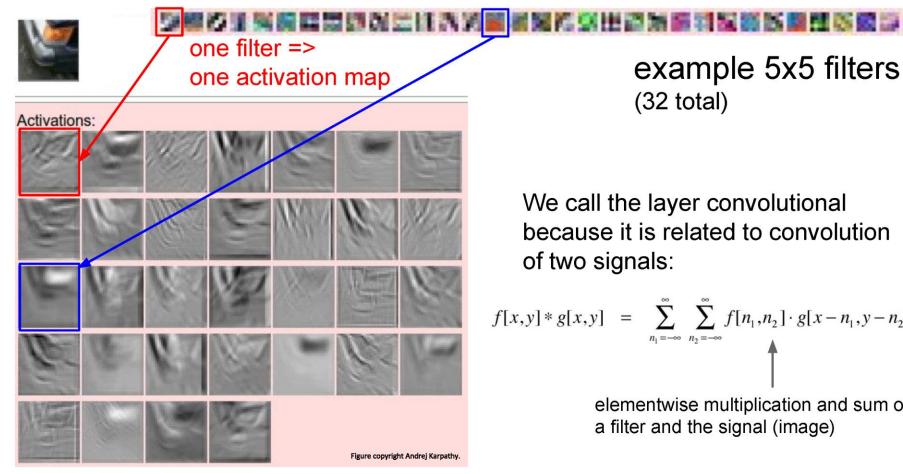
Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions



Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions





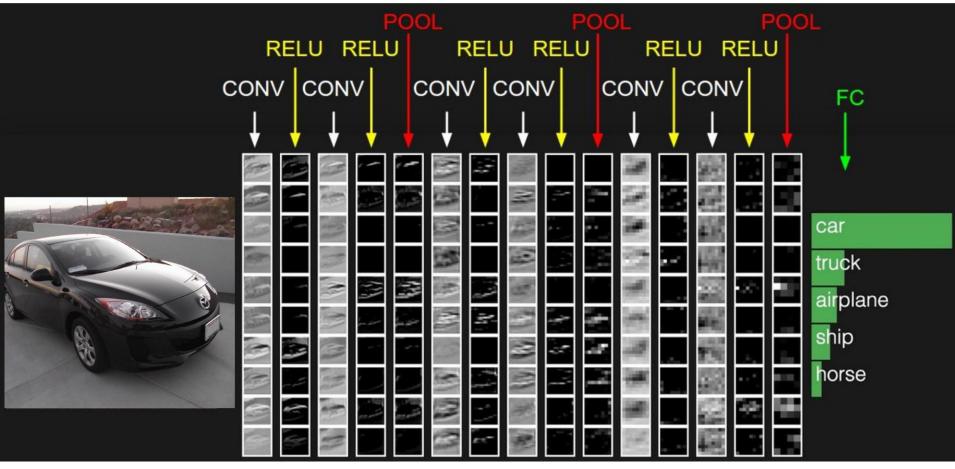


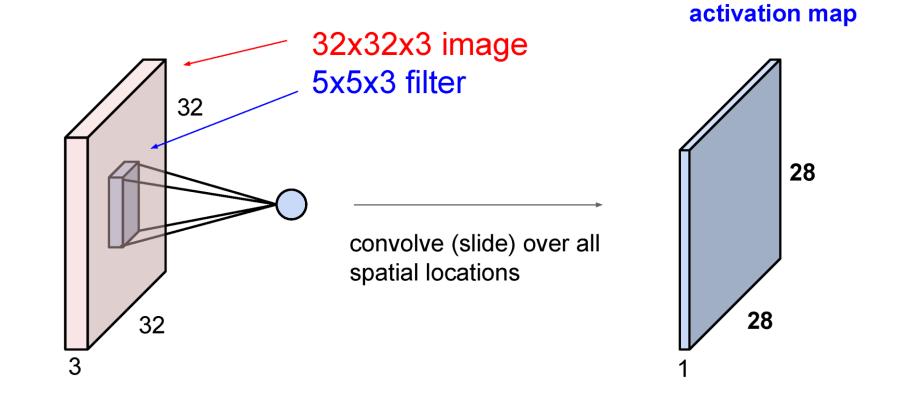
example 5x5 filters (32 total)

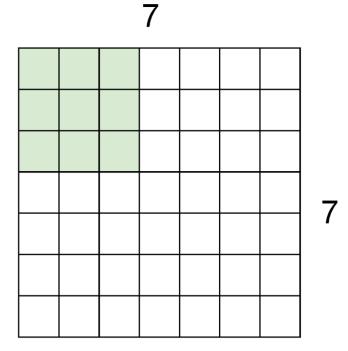
We call the layer convolutional because it is related to convolution of two signals:

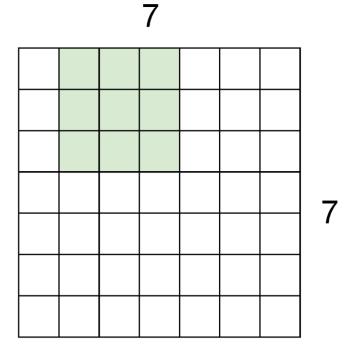
$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

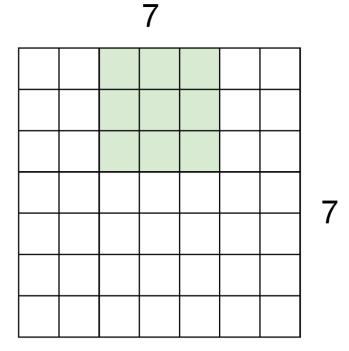
elementwise multiplication and sum of a filter and the signal (image)

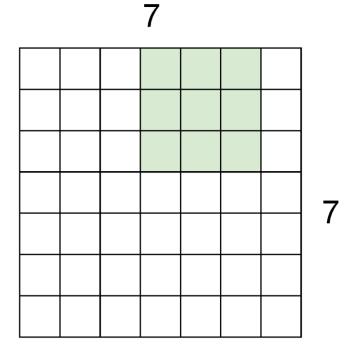


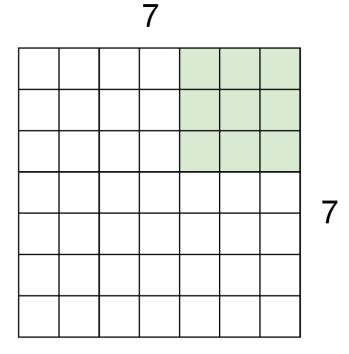






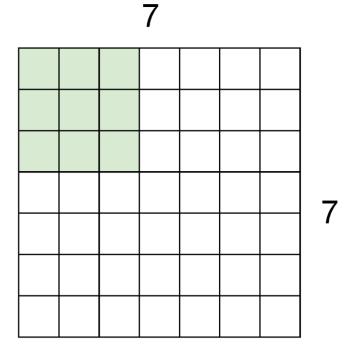




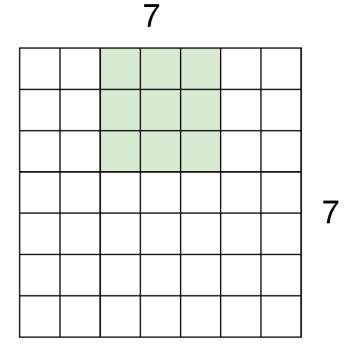


7x7 input (spatially) assume 3x3 filter

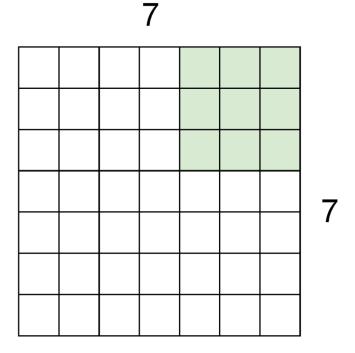
=> 5x5 output



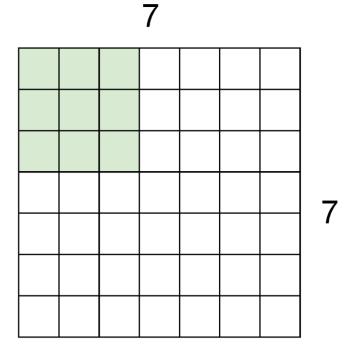
7x7 input (spatially) assume 3x3 filter applied **with stride 2**



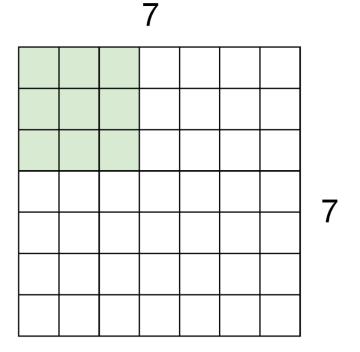
7x7 input (spatially) assume 3x3 filter applied **with stride 2**



7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

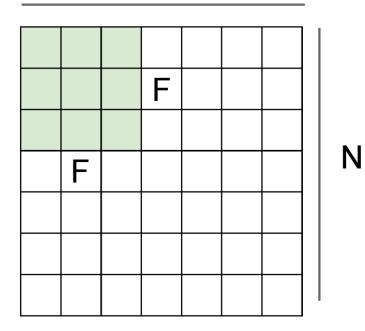


7x7 input (spatially) assume 3x3 filter applied **with stride 3?**



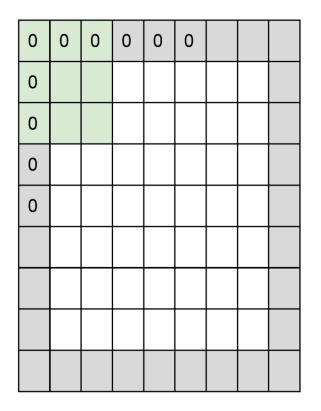
7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.



Output size: (N - F) / stride + 1

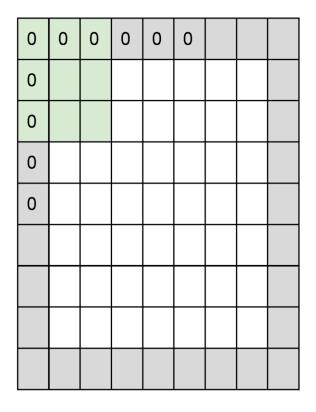
In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:) (N - F) / stride + 1

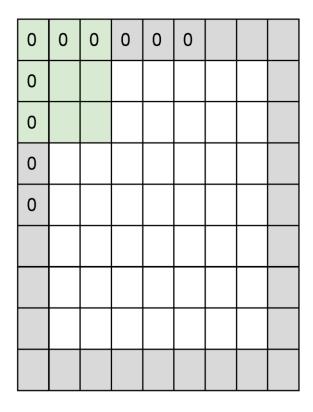
In practice: Common to zero pad the border



e.g. input 7x7 **3x3** filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

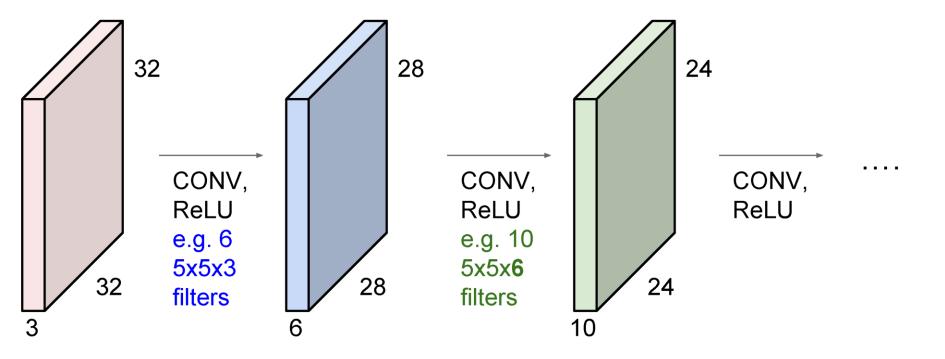
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

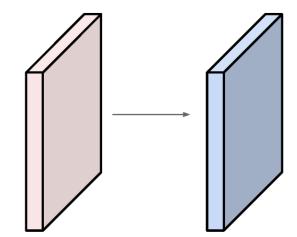
F = 7 = 2 zero pad with 3

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

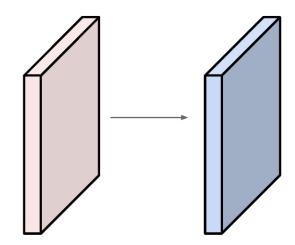


Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2



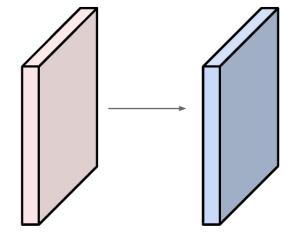
Output volume size: ?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2



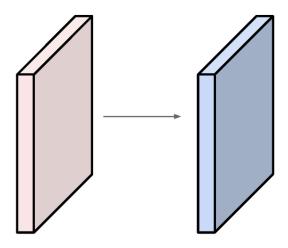
Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

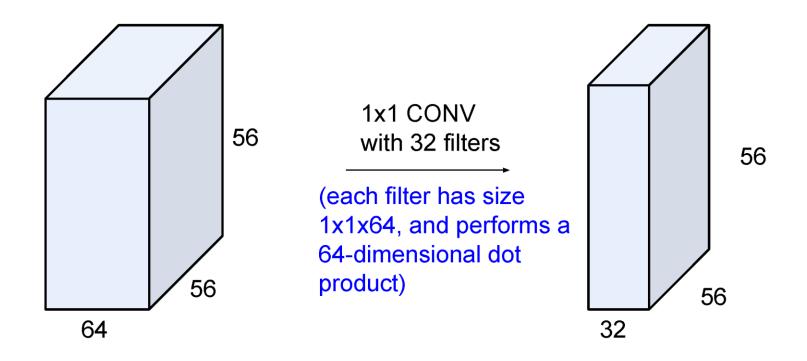


Number of parameters in this layer?

Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

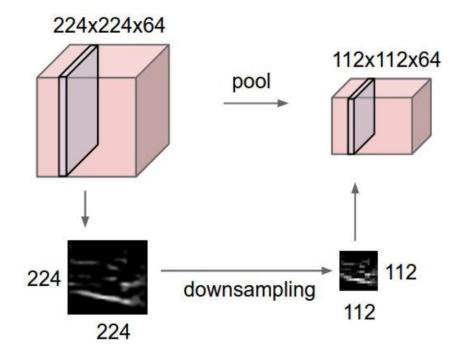


Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = 760 (btw, 1x1 convolution layers make perfect sense)



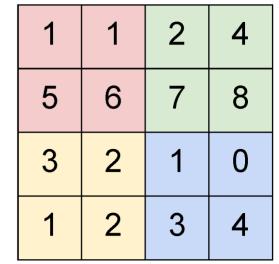
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:



MAX POOLING

Single depth slice



У

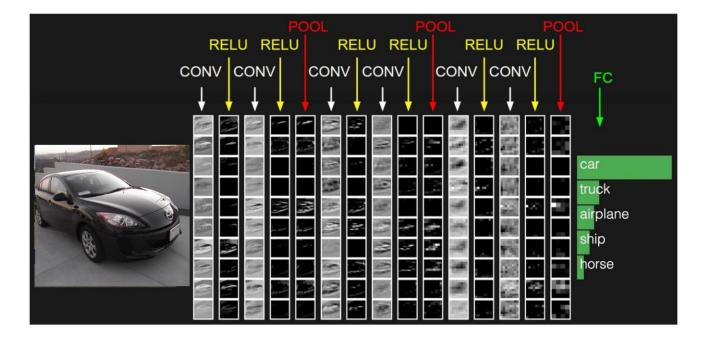
max pool with 2x2 filters and stride 2

6	8
3	4

Χ

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks



[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

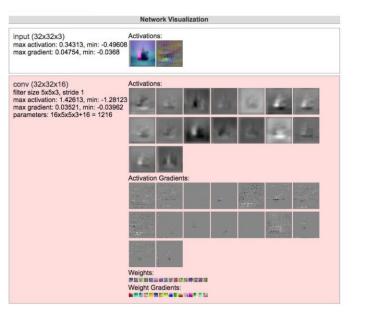
Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.



https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm

Next time: Backpropagation

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = \#...
dh1, dW2, db2 = #...
                           This is the backwards
dW1,db1 = #...
                            pass. We compute it
                           with backpropagation
```

Questions?