Readings

- Optimization
 - http://cs231n.github.io/optimization-1/
 - http://cs231n.github.io/optimization-2/
Announcements

• Project 4 (Stereo) is out, due Thursday, April 26, 2018, by 11:59pm
 – To be done in groups of two

• Quiz 3 in class, Monday, 4/30, first 10 minutes of class

• Final exam in class, May 9
The story so far

\[s = f(x; W) = Wx \]
\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
\[L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \]

scores function
SVM loss
data loss + regularization

We also learned about other data losses, e.g. the “softmax” loss
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

\[s = f(x_i; W) \]

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

cat 3.2

car 5.1

frog -1.7
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

$$s = f(x_i; W)$$

$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
<th>24.5</th>
<th>164.0</th>
<th>0.18</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Softmax Function

Probabilities must be \(\geq 0\)

unnormalized probabilities
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

\[s = f(x_i; W) \]

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Softmax Function

<table>
<thead>
<tr>
<th>Cat</th>
<th>3.2</th>
<th>24.5</th>
<th>0.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>5.1</td>
<td>164.0</td>
<td>0.87</td>
</tr>
<tr>
<td>Frog</td>
<td>-1.7</td>
<td>0.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Probabilities must be >= 0
Probabilities must sum to 1

unnormalized probabilities
probabilities
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

\[s = f(x_i; W) \]

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Softmax Function

<table>
<thead>
<tr>
<th>Cat</th>
<th>3.2</th>
<th>24.5</th>
<th>0.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>5.1</td>
<td>164.0</td>
<td>0.87</td>
</tr>
<tr>
<td>Frog</td>
<td>-1.7</td>
<td>0.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Unnormalized log-probabilities / logits

unnormalized probabilities

Probabilities must be >= 0

Probabilities must sum to 1

Probabilities
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

\[s = f(x_i; W) \]

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Softmax Function

- Probabilities must be \(\geq 0 \)
- Probabilities must sum to 1

L_i = -\log P(Y = y_i | X = x_i)

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
<th>24.5</th>
<th>0.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
<td>164.0</td>
<td>0.87</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>0.18</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Unnormalized log-probabilities / logits → unnormalized probabilities → probabilities

\[\rightarrow L_i = -\log(0.13) = 0.89 \]
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

\[
s = f(x_i; W)
\]

\[
P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}
\]

Cat

\[
\begin{align*}
3.2 & \quad \exp & 24.5 & \quad \text{normalize} & 0.13 & \quad \text{compare} & 1.00 \\
5.1 & \quad 164.0 & 0.87 & \quad \text{Correct} & 0.00 & \quad \text{probs} \\
-1.7 & \quad 0.18 & 0.00 & \quad \text{Unnormalized} & 0.00 & \quad \text{log-probabilities / logits}
\end{align*}
\]

Probabilities must be \(\geq 0\)

Probabilities must sum to 1

\(L_i = -\log P(Y = y_i | X = x_i)\)
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

\[s = f(x_i; W) \]

\[P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

- **Probabilities must be >= 0**
- **Probabilities must sum to 1**

Unnormalized log-probabilities / logits

cat	3.2
	5.1
	-1.7

car	24.5
	164.0
	0.18

frog	\(\exp \)	\(\frac{e^{s_k}}{\sum_j e^{s_j}} \)
	compare	1.00
	normalize	0.00

Kullback–Leibler divergence

\[D_{KL}(P||Q) = \sum_y P(y) \log \frac{P(y)}{Q(y)} \]

Correct probs
Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as **probabilities**

\[s = f(x_i; W) \]

\[P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}} \]

Softmax Function

- **Cat**: 3.2 → exp → 24.5
- **Car**: 5.1 → exp → 164.0
- **Frog**: -1.7 → exp → 0.18

Probabilities must be \(\geq 0 \)

Probabilities must sum to 1

\[L_i = -\log P(Y = y_i | X = x_i) \]

Cross Entropy

\[H(P, Q) = H(p) + D_{KL}(P || Q) \]

Correct probs

- **Cat**: 0.13
- **Car**: 0.87
- **Frog**: 0.00

Unnormalized log-probabilities / logits

unnormalized probabilities

probabilities
The story so far

\[s = f(x; W) = Wx \]

scores function

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

SVM loss

\[L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \]

data loss + regularization

We also learned about other data losses, e.g. the “softmax” loss
Computation graphs

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Convolutional network (AlexNet)

input image

weights

loss

(a much bigger computation graph)
How do we set the weights?

• Need to solve an optimization problem:
 – Find the weights W that minimize the training loss L

• In general this is a non-linear, non-convex problem
 – Closed-form solvers do not generally exist, unlike with e.g. least squares problems
 – Might not find the globally optimal weights

• (Side note: some learning problems, such as linear SVMs, do have convex loss functions)
Strategy #1: A bad idea: **Random search**

```python
# assume X_train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y_train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function

bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
    W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
    loss = L(X_train, Y_train, W) # get the loss over the entire training set
    if loss < bestloss: # keep track of the best solution
        bestloss = loss
        bestW = W
    print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (truncated: continues for 1000 lines)
```
Let's see how well this works on the test set...

```python
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols)  # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~95%)
Strategy #2: Follow the slope (aka Gradient Descent)
Gradient descent: walk in the direction opposite gradient

• Q: How far?
• A: Step size: *learning rate*

• Too big: will miss the minimum
• Too small: slow convergence
Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

\[\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension.

The slope in any direction is the dot product of the direction with the gradient.
The direction of steepest descent is the negative gradient.
current W:

| 0.34, |
| -1.11, |
| 0.78, |
| 0.12, |
| 0.55, |
| 2.81, |
| -3.1, |
| -1.5, |
| 0.33, |

loss 1.25347

gradient dW:

<p>| ?, |
| ?, |
| ?, |
| ?, |
| ?, |
| ?, |
| ?, |
| ?,... |</p>
<table>
<thead>
<tr>
<th>current (W):</th>
<th>(W + h) (first dim):</th>
<th>gradient (dW):</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.34,</td>
<td>[0.34 + 0.0001,</td>
<td>[?,</td>
</tr>
<tr>
<td>-1.11,</td>
<td>-1.11,</td>
<td>?</td>
</tr>
<tr>
<td>0.78,</td>
<td>0.78,</td>
<td>?</td>
</tr>
<tr>
<td>0.12,</td>
<td>0.12,</td>
<td>?</td>
</tr>
<tr>
<td>0.55,</td>
<td>0.55,</td>
<td>?</td>
</tr>
<tr>
<td>2.81,</td>
<td>2.81,</td>
<td>?</td>
</tr>
<tr>
<td>-3.1,</td>
<td>-3.1,</td>
<td>?</td>
</tr>
<tr>
<td>-1.5,</td>
<td>-1.5,</td>
<td>?</td>
</tr>
<tr>
<td>0.33,...]</td>
<td>0.33,...]</td>
<td>?,...]</td>
</tr>
</tbody>
</table>

loss 1.25347 | loss 1.25322 |
current W:

\[
\begin{bmatrix}
0.34, \\
-1.11, \\
0.78, \\
0.12, \\
0.55, \\
2.81, \\
-3.1, \\
-1.5, \\
0.33, \ldots
\end{bmatrix}
\]

loss 1.25347

$W + h$ (first dim):

\[
\begin{bmatrix}
0.34 + 0.0001, \\
-1.11, \\
0.78, \\
0.12, \\
0.55, \\
2.81, \\
-3.1, \\
-1.5, \\
0.33, \ldots
\end{bmatrix}
\]

loss 1.25322

gradient dW:

\[
\begin{bmatrix}
-2.5, \\
?, \\
?, \\
?, \\
\frac{(1.25322 - 1.25347)/0.0001}{0.0001} = -2.5
\end{bmatrix}
\]
<table>
<thead>
<tr>
<th>current W:</th>
<th>$W + h$ (second dim):</th>
<th>gradient dW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]</td>
<td>[0.34, -1.11 + 0.0001, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]</td>
<td>[-2.5, ?, ?, ?, ?, ?, ?, ?, ?, ?, ...,]</td>
</tr>
<tr>
<td>loss 1.25347</td>
<td>loss 1.25353</td>
<td></td>
</tr>
</tbody>
</table>
current W:
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347

$W + h$ (second dim):
[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25353

gradient dW:
[-2.5,
0.6,
?,
?,
(1.25353 - 1.25347)/0.0001 = 0.6
\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]
?,...]
<table>
<thead>
<tr>
<th>current W:</th>
<th>$W + h$ (third dim):</th>
<th>gradient dW:</th>
</tr>
</thead>
</table>
| [0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...] | [0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...] | [-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,...,] |
| loss 1.25347 | loss 1.25347 |
current W:

[0.34, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

loss 1.25347

W + h (third dim):

[0.34, -1.11, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

loss 1.25347

gradient dW:

[-2.5, 0.6, 0, ?, 0, 0, 0, 0, ...]

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

\[
(1.25347 - 1.25347)/0.0001 = 0
\]
<table>
<thead>
<tr>
<th>current W:</th>
<th>$W + h$ (third dim):</th>
<th>gradient dW:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.34, 0.78, 0.55, 2.81, -3.1, -1.5, 0.33, ...]</td>
<td>[0.34, -1.11, 0.78 + 0.0001, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, ...]</td>
<td>[-2.5, 0.6, 0, ?, ?, 0, ?, ..., ...]</td>
</tr>
<tr>
<td>loss 1.25347</td>
<td>loss 1.25347</td>
<td></td>
</tr>
</tbody>
</table>

Numeric Gradient
- Slow! Need to loop over all dimensions
- Approximate
But the loss is just a function of W!

\[
L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2
\]

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

\[
s = f(x; W) = Wx
\]

want $\nabla_W L$
But the loss is just a function of W!

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = W x$$

want $\nabla_W L$

Use calculus to compute an analytic gradient
current W: [0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33, ...]

loss 1.25347
dW = ... (some function data and W)

gradient dW: [-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, -2.1, ...]
In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.
Questions?
negative gradient direction
Gradient descent in action
Analytic Gradient

Single term of SVM (hinge) data loss:

$$L_i = \sum_{j \neq y_i} \left[\max(0, w_j^T x_i - w_{y_i}^T x_i + 1) \right]$$

$$\nabla_{w_j} L_i = 1(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0)x_i$$

$$\nabla_{w_{y_i}} L_i = -\left(\sum_{j \neq y_i} 1(w_j^T x_i - w_{y_i}^T x_i + \Delta > 0) \right)x_i$$

Full gradient is the sum of all L_is over all training examples x_i
Gradient Descent

```python
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Stochastic Gradient Descent (SGD)

\[L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W) \]

\[\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W) \]

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common

Vanilla Minibatch Gradient Descent

```
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```
Interactive Web Demo

Datapoints are shown as circles colored by their class (red/green/blue). The background regions are colored by whichever class is most likely at any point according to the current weights. Each classifier is visualized by a line that indicates its zero score level set. For example, the blue classifier computes scores as $W_{0,0} x_0 + W_{0,1} x_1 + b_0$ and the blue line shows the set of points (x_0, x_1) that give score of zero. The blue arrow draws the vector $(W_{0,0}, W_{0,1})$, which shows the direction of score increase and its length is proportional to how steep the increase is.

Note: you can drag the datapoints.

Parameters W, b are shown below. The value is in **bold** and its gradient (computed with backprop) is in *red, italic* below. Click the triangles to control the parameters.

Visualization of the data loss computation. Each row is loss due to one datapoint. The first three columns are the 2D data x_i and the label y_i. The next three columns are the three class scores from each classifier $f(x_i; W, b) = W x_i + b$ (e.g. $s[0] = x[0] * W[0,0] + x[1] * W[0,1] + b[0]$). The last column is the data loss for a single example, L_i.

Total data loss: 0.33
Regularization loss: 1.64
Total loss: 1.96

L2 Regularization strength: 0.10000

Multiclass SVM loss formulation:

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
The dynamics of Gradient Descent

\[L = \frac{1}{N} \sum_i \sum_{j \neq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) \right] + \lambda \sum_k \sum_l W_{k,l}^2 \]

pull some weights up and some down

\[L = \frac{1}{N} \sum_i -\log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right) + \lambda \sum_k \sum_l W_{k,l}^2 \]

always pull the weights down
Momentum Update

\[\text{weights}_\text{grad} = \text{evaluate}_\text{gradient}(\text{loss}_\text{fun}, \text{data}, \text{weights}) \]
\[\text{vel} = \text{vel} \times 0.9 - \text{step}_\text{size} \times \text{weights}_\text{grad} \]
\[\text{weights} += \text{vel} \]
Many other ways to perform optimization…

- Second order methods that use the Hessian (or its approximation): BFGS, LBFGS, etc.

- Currently, the lesson from the trenches is that well-tuned SGD+Momentum is very hard to beat for CNNs.
Questions?
Where are we?

• Classifiers: SVM vs. Softmax
• Gradient descent to optimize loss functions
 – Batch gradient descent, stochastic gradient descent
 – Momentum
 – Numerical gradients (slow, approximate), analytic gradients (fast, error-prone)
Aside: Image Features

\[f(x) = Wx \]
Aside: Image Features

$$f(x) = Wx$$

Feature Representation

Class scores
Image Features: Motivation

Cannot separate red and blue points with linear classifier
Image Features: Motivation

\[f(x, y) = (r(x, y), \theta(x, y)) \]

Cannot separate red and blue points with linear classifier

After applying feature transform, points can be separated by linear classifier
Example: Color Histogram
Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions
Within each region quantize edge direction into 9 bins

Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

Levine, "Object recognition from local scale-invariant features," ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
Example: Bag of Words

Step 1: Build codebook
- Extract random patches
- Cluster patches to form “codebook” of “visual words”

Step 2: Encode images

Fei-Fei and Perona, "A bayesian hierarchical model for learning natural scene categories". CVPR 2005
Aside: Image Features
Image features vs ConvNets

Feature Extraction

f

10 numbers giving scores for classes

training

10 numbers giving scores for classes

training
Questions?
Next: Neural networks