CS5670: Computer Vision
Noah Snavely

Optimization for machine learning

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung
http://vision.stanford.edu/teaching/cs231n/

Readings

* Image classification:
— http://cs231n.github.io/classification/

 Linear classification and loss functions:
— http://cs231n.github.io/linear-classify/

* Optimization
— http://cs231n.github.io/optimization-1/
— http://cs231n.github.io/optimization-2/

http://cs231n.github.io/classification/
http://cs231n.github.io/linear-classify/
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-2/

Announcements

* Project 4 (Stereo) is out, due Thursday, April
26, 2018, by 11:59pm

— To be done in groups of two

* Quiz 3 in class, Monday, 4/30, first 10 minutes
of class

* Final exam in class, May 9

The story so far

S — f(g;, W) — W scores function
L; = Zj?gyi max(0, s; — sy, + 1) SVM loss

N "
by = % S Li + Y, W2 data loss + regularization

We also learned about other data losses, e.g.
the “softmax” loss

Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities

cat 3.2
car 5.1

frog -1.7

Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
s= f(zi; W)| |P(Y =KX =) = 2| Softmex

S5 G
>.; €7 | Function

cat 3.2
car 5.1

frog -1.7

Softmax Classifier (Multinomial Logistic Regression)

51 —164.0

Want to interpret raw classifier scores as probabilities

s = flzs; W)

Probabilities
must be >=0

24.5

0.18

unnormalized
probabilities

P(Y =klX =) =

e’k

E:je%

Softmax
Function

Softmax Classifier (Multinomial Logistic Regression)

g = flas W) |PF==k[X=u)= z:
Probabilities Probabilities
must be >=0 must sum to 1
: 24.5 0.13
exp I
51 —{164.0—— 0.87
0.18 0.00
unnormalized probabilities

probabilities

» Want to interpret raw classifier scores as probabilities

Softmax
Function

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flzs; W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

—164.0|~""+ 0.87

0.18

Unnormalized

unnormalized

log-probabilities / logits probabilities

P(Y =klX =) =

e’k

E:je%

Probabilities
must sum to 1

0.13

0.00

probabilities

Want to interpret raw classifier scores as probabilities

Softmax
Function

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flzs; W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

—164.0|~""+ 0.87

0.18

Unnormalized

unnormalized

log-probabilities / logits probabilities

P(Y =klX =) =

e’k

E:je%

Probabilities
must sum to 1

0.00

probabilities

Want to interpret raw classifier scores as probabilities

Softmax
Function

Li = —log P(Y = 4| X = =)

0.13 | — L =-10g(0.13)
= 0.89

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

log-probabilities / logits

3.2

5.1
-1.7

exp

Unnormalized

. Want to interpret raw classifier scores as probabilities

s = flzs W) \PY =KX =) = 5= o
T ISR o et
24.5 0.13 [comare<— 1,00
normalize
164.0—— 0.87 0.00
0.18 0.00 0.00
unnormalized probabilities Correct

probabilities

probs

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flzs; W)

Probabilities
must be >=0

3.2
5.1
-1.7

24.5

exp

P(Y =klX =) =

e’k

Zj e’

Probabilities
must sum to 1

0.1 3 ——» compare ——

I 1 6 4 0 normalize 0 87 Kullback—Leibler

0.18

Unnormalized

unnormalized

log-probabilities / logits probabilities

probabilities

0.00 Drr(P|Q) =

> Ply)log

divergence

P(y)
Qy)

. Want to interpret raw classifier scores as probabilities

Softmax
Function

Li = —log P(Y = 4| X = =)

1.00
0.00
0.00

Correct
probs

Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

log-probabilities / logits

3.2
5.1
-1.7

. Want to interpret raw classifier scores as probabilities

Unnormalized

s = fles W) PO = HX = 2:) = 555 S
Probabilities Probabilities
must be >=0 must sum to 1 o = — I Y = X =)
24.5 0.13 [compere<—1 1,00
—(164.0 ="+ 0.87 | cosszmory | 0.00
H(P,Q) =
0.18 0.00 |, == .| 0.00
unnormalized probabilities Correct
probabilities probs

The story so far

S — f(g;, W) — W scores function
L; = Zj?gyi max(0, s; — sy, + 1) SVM loss

N "
by = % S Li + Y, W2 data loss + regularization

We also learned about other data losses, e.g.
the “softmax” loss

Computation graphs

f

= Wex| |Li =>_;,, max(0,s; —

.

e

s (scores) hinge
" loss

(R

N

R(W)

Convolutional network =
(AlexNet) i Sei—>

weights

Geoffrey Hinton, 2012, Reproduced with permission.

(a much bigger computation graph)

How do we set the weights?

* Need to solve an optimization problem:
— Find the weights W that minimize the training loss L

* |n general this is a non-linear, non-convex
problem

— Closed-form solvers do not generally exist, unlike
with e.g. least squares problems

— Might not find the globally optimal weights

* (Side note: some learning problems, such as
linear SVMs, do have convex loss functions)

Strategy #1: A bad idea: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001]
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Lets see how well this works on the test set...

scores = Wbest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~95%)

Strategy #2: Follow the slope
(aka Gradient Descent)

original W

negative gradient direction

Gradient descent: walk in the direction opposite gradient
e Q:How far?

 A:Step size: learning rate

* Too big: will miss the minimum

* Too small: slow convergence

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

df(z) _ . fe+h) - f(@)
dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives) along
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

"3

-~ -~
-~

-

-~ -~

-~

SCIESIES IR IR RS RS RN

| |

current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?.
0.78, 0.78, ?.
0.12, 0.12, ?.
0.55, 0.55, ?.
2.81, 2.81, ?.
-3.1, -3.1, ?.
-1.5, -1.5, ?.
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

?,
?,

(1.25322 - 1.25347)/0.0001
=-2.5

af(z) _ . fl@+h) - f(z)
h

dx h —0

?,
7.

AR

current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,..]
loss 1.25347 | loss 1.25353

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

[-2.5,

0.6,
2\
?

(1.25353 - 1.25347)/0.0001
=0.6

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001.
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
6

]

-~ -~ -~ - -~

-~

N N))) D) O

| |

current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11, 0.6,

0.78, 0.78 + 0.0001, 0,

0.12, 0.12, 2. \

0.55, 0.55, o

281, 281, (=1 625347 - 1.25347)/0.0001
-5, -1, if(x) . f(z+h)— f(z)
-1.5, -1.5, = ik R
0.33,...] 0.33,...] —

loss 1.25347 | loss 1.25347

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001.
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

]
£

Numeric Gradient
- Slow! Need to loop over
all dimensions
- Approximate

a——

But the loss is just a function of W!

N
L = %21:1[4 ‘|‘Zka2
Li =) ,,, max(0,s; — sy, +1)
s=f(z; W) =Wz

want VH/L

But the loss is just a function of W!

N
L= %ZizlLi +Zka2
Li =) ;. max(0,s; — sy, +1)
s= flo; W)= Wg

want VL

Use calculus to compute an
analytic gradient

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

dw = ...
(some function
data and W)

\

gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
0.5,
1.1
1.3
21,

]

In summary:

- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In_practice: Always use analytic gradient, but check
Implementation with numerical gradient. This is called a
gradient check.

Questions?

original W

/

negative gradient direction

Gradient descent in action

Analytic Gradient

Single term of SVM (hinge) data loss:

17 Yi

Vo, L; = 1(’w;-.ra:i — wZ:a:Z + A > 0)x;

vaz’Li - (Z 1(’11)?:131- — wg:mz + A > O)) T

JFYi

Full gradient is the sum of all L;s over all training examples Xx;

Gradient Descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad

Stochastic Gradient Descent (SGD)

Full sum expensive

N
1 .
L(W) = N Z Li(z;,yi, W) + AR(W) when N is large!
1 zz:vl Approximate sum
L = — Li(x;. ys using a minibatch of
VwL(W) = = ;VW (i, i, W) + AV R(W) paing & 1
. 32 /64 / 128 common
while

data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

Interactive Web Demo

Datapoints are shown as circles colored by their class
(red/gree/blue). The background regions are colored by
whichever class is most likely at any point according to the
current weights. Each classifier is visualized by a line that
indicates its zero score level set. For example, the blue
classifier computes scores as Wy ozog + Wy 121 + by and
the blue line shows the set of points (:EO, xl) that give score
of zero. The blue arrow draws the vector (Wy o, Wy1),
which shows the direction of score increase and its length is
proportional to how steep the increase is.

Note: you can drag the datapoints.

@
®
®
/
o

@), ®

S
@
®

Parameters ~ W.,b are
shown below. The value is
in bold and its gradient
(computed with backprop)
is in red, italic below. Click
the triangles to control the

Visualization of the data loss computation. Each row is loss due
to one datapoint. The first three columns are the 2D data &; and
the label y;. The next three columns are the three class scores
from each classifier f(x;; W,b) = Wx; + b (E.g. s[0] = x[0] *
WI0,0] + x[1] * W[0,1] + b[0]). The last column is the data loss for
a single example, L;.

arameters.
: xto1 | [xi || v Jf[stor | [snu|[sran |f] = |
W[0,0] W[O,1] b[O]

A A A ‘0.50H0.40H 0 |‘1.13|‘0.08||0.09|‘0.00|
2.923 1.24 | |-0.49 0.80 0.30 0 1.67 0.26 O.87| 0.20
-0.01|]0.21 || 0.00

0.30||0.80 0 1.18 | |-0.44 —1.17| 0.00

\ v v
WiL1,0] WiLl,1] bIl] ‘—0.40H0.30H 1 | ‘—1.01H0.02||—1.38| ‘o.oo|

r r

A A A ‘—O.SUHU.TOH 1 | ‘—0.29H—0.44||—2.o7| ‘i.lB
0.20 | (-1.19|| 0.46 -0.70| | 0.20 1 -1.80| | 0.08 —1.72| 0.00
-0.00||-0.19| | 0.00

0.70 | |-0.40 2 0.58 || 1.07 2.23| 0.00

v v v
W[2,0] W[2,1]1 bl2] ‘0.50“—0.60“ 2 | ‘—0.12H1.27||2.29| ‘o.oo|

A A A

‘—o 40H—o 50 ‘ 2 | ‘—2.00|‘o.97||o.39| ‘i.59|

1.87 | |[-2.20|| 0.03 -

0.23||-0.02|| 0.00 mean:
Total data loss: 0.33 0.33
v \{ v Regularization loss: 1.64 :

Step size: 0.10000

Single parameter update

Start repeated update

Total loss: 1.96

L2 Regularization strength: 0.10000

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

The dynamics of Gradient Descent

pull some weights up and some down

L= % Zz [max(O,f(SUi;W)j - f(fEi;W)y,,. + A)] U AZEW’?J
. ko1

1 JFY;

1 elv 2
L= N Z— log (> uk Z Z Wi always pull the weights

Zj el ko1 down

Momentum Update gadien

update

momentum

weights grad = evaluate gradient(loss fun, data, weights)
vel = vel * 0.9 - step size * weights grad
weights += vel

=

(Fig. 2a) (Fig. 2b)

Many other ways to perform optimization...

- Second order methods that use the Hessian (or its
approximation): BFGS, LBFGS, etc.

- Currently, the lesson from the trenches is that well-tuned
SGD+Momentum is very hard to beat for CNNSs.

Questions?

Where are we?

e Classifiers: SVM vs. Softmax
* Gradient descent to optimize loss functions

— Batch gradient descent, stochastic gradient
descent

— Momentum

— Numerical gradients (slow, approximate), analytic
gradients (fast, error-prone)

Aside: Image Features

» (Class
scores

plane car bird cat deer
- ‘ .hor“ : .

Aside: Image Features

f(x) = Wx
e —_— Class

_ scores
Feature Representation

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

8

After applying feature
transform, points can
be separated by linear

classifier

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions Example: 320x240 image gets divided
Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features”, ICCV 1998
Dalal and Triggs, "Histograms of ariented gradients for human detection," CVPR 2005

Example: Bag of Words

Step 1: Build codebook

Cluster patches to

Extract random LN ¥ form “codebook”
patches of “visual words”
= &
N
~N
DDDDDDDDDD L] |
 FaENTEENEE W
gy
HoollOooUOO D
dANE ' E=EN

Fei-Fei and Perona, "A bayesian hierarchical model for leaming natural scene categories”, CYPR 2005

Aside: Image Features

Image features vs ConvNets

f

Feature Extraction > LSRG

I] ” |]|] |] ” scores for classes
h

training

[\ | 3 I', LN 3 ! ol | A o S | Krizhevsky, Sutskever, and Hirton, “Imagenet classification
J 3y RN 2 S s o o with deeg canvohutional neural nstworks”, NIPS 2012,

Fa \ i /1 | Figure copyright Krizhevsicy, Sutskever, and Hintan, 2012.

N 8

- Reproduced with permission.

>

10 numbers giving
scores for classes

training

Questions?

Next: Neural networks

