CS5670: Computer Vision

Noah Snavely

Two-view geometry

Announcements

- Midterm due at the beginning of class today
- Project 3 will be assigned soon
 - Groups will default to same as Project 2
 - Tentative due date: 3/30

Reading

• Reading: Szeliski, Ch. 7.2

Fundamental matrix song

https://www.youtube.com/watch?v=DgGV3I82NTk

Back to stereo

• Where do epipolar lines come from?

Two-view geometry

Where do epipolar lines come from?

- This *epipolar geometry* of two views is described by a Very Special 3x3 matrix \mathbf{F} , called the *fundamental matrix*
- ${f F}$ maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: ${f Fp}$
- Epipolar constraint on corresponding points: $\mathbf{q}^T\mathbf{F}\mathbf{p}=0$

• Two Special points: \mathbf{e}_1 and \mathbf{e}_2 (the *epipoles*): projection of one camera into the other

- Two Special points: \mathbf{e}_1 and \mathbf{e}_2 (the *epipoles*): projection of one camera into the other
- All of the epipolar lines in an image pass through the epipole

Epipoles

- Why does **F** exist?
- Let's derive it...

 \mathbf{K}_1 : intrinsics of camera 1

 \mathbf{K}_2 : intrinsics of camera 2

 ${f R}$: rotation of image 2 w.r.t. camera 1

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through \mathbf{p} in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$: ray through \mathbf{q} in camera 2's coordinate system

- $\tilde{\mathbf{p}}$, $\mathbf{R}^T \tilde{\mathbf{q}}$, and \mathbf{t} are coplanar
- epipolar plane can be represented as $\mathbf{t} imes ilde{\mathbf{p}}$

$$(\mathbf{R}^T \tilde{\mathbf{q}})^T (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$$

- One more substitution:
 - Cross product with t can be represented as a 3x3 matrix

$$[\mathbf{t}]_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \qquad \mathbf{t} \times \tilde{\mathbf{p}} = [\mathbf{t}]_{\times} \tilde{\mathbf{p}}$$

$$\tilde{\mathbf{q}}^T \mathbf{R} (\mathbf{t} \times \tilde{\mathbf{p}}) = 0$$

$$\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}]_{\times} \tilde{\mathbf{p}} = 0$$

 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through \mathbf{p} in camera 1's (and world) coordinate system

$$ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$$

 $ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$: ray through **q** in camera 2's coordinate system

$$\tilde{\mathbf{q}}^T \mathbf{R} [\mathbf{t}]_{\times} \tilde{\mathbf{p}} = 0$$

$$\tilde{\mathbf{q}}^T \mathbf{E} \tilde{\mathbf{p}} = 0$$

$$\mathbf{E}_{\sim} \text{ the Essential matrix}$$

Cross-product as linear operator

Useful fact: Cross product with a vector **t** can be represented as multiplication with a (*skew-symmetric*) 3x3 matrix

$$egin{aligned} \left[\mathbf{t}
ight]_{ imes} &= \left[egin{array}{ccc} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{array}
ight] \ \mathbf{t} imes \mathbf{ ilde{p}} &= \left[\mathbf{t}
ight]_{ imes} \mathbf{ ilde{p}} \end{aligned}$$

 \mathbf{K}_1 : intrinsics of camera 1

 \mathbf{K}_2 : intrinsics of camera 2

 ${f R}$: rotation of image 2 w.r.t. camera 1

$$\mathbf{q}^T \mathbf{K}_2^{-T} \mathbf{R} [\mathbf{t}]_{\times} \mathbf{K}_1^{-1} \mathbf{p} = 0$$

$$\mathbf{F} \longleftarrow \text{the Fundamental matrix}$$

Properties of the Fundamental Matrix

- ullet ${f Fp}$ is the epipolar line associated with ${f p}$
- $oldsymbol{f F}^T{f q}$ is the epipolar line associated with ${f q}$

• $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$

• \mathbf{F} is rank 2

How many parameters does F have?

Rectified case

$$\mathbf{R} = \mathbf{I}_{3 \times 3} \\ \mathbf{t} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \qquad \mathbf{E} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Stereo image rectification

image reprojection

Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Original stereo pair

Relationship with homography?

Images taken from the same center of projection? Use a homography!

Questions?

Estimating **F**

- If we don't know K₁, K₂, R, or t, can we estimate F for two images?
- Yes, given enough correspondences

Estimating F – 8-point algorithm

The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$$

for any pair of matches x and x' in two images.

• Let $x=(u,v,1)^T$ and $x'=(u',v',1)^T$,

$$\mathbf{F} = \begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix}$$

each match gives a linear equation

$$uu'f_{11} + vu'f_{12} + u'f_{13} + uv'f_{21} + vv'f_{22} + v'f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm

**Point algorithm
$$\begin{bmatrix} u_1u_1' & v_1u_1' & u_1' & u_1v_1' & v_1v_1' & v_1' & u_1 & v_1 & 1 \\ u_2u_2' & v_2u_2' & u_2' & u_2v_2' & v_2v_2' & v_2' & u_2 & v_2 & 1 \\ \vdots & \vdots \\ u_nu_n' & v_nu_n' & u_n' & u_nv_n' & v_nv_n' & v_n' & u_n & v_n & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix}$$
 • Like with homographies, instead of solving $\mathbf{Af} = \mathbf{0}$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|$, least eigenvector of $\mathbf{A}^T \mathbf{A}$.

of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$

8-point algorithm — Problem?

- F should have rank 2
- To enforce that **F** is of rank 2, F is replaced by F' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F} = \mathbf{U}\Sigma\mathbf{V}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$
, let $\Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

then $\mathbf{F'} = \mathbf{U} \mathbf{\Sigma'} \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

```
% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
    x1(1,:)
                  x1(2,:)' ones(npts,1)];
[U,D,V] = svd(A);
% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:, 9), 3, 3)';
% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
```

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise

Problem with 8-point algorithm

Problem with 8-point algorithm
$$\begin{bmatrix} u_1u_1' & v_1u_1' & u_1' & u_1v_1' & v_1v_1' & v_1' & u_1 & v_1 & 1 \\ u_2u_2' & v_2u_2' & u_2' & u_2v_2' & v_2v_2' & v_2' & u_2 & v_2 & 1 \\ \vdots & \vdots \\ u_nu_n' & v_nu_n' & u_n' & u_nv_n' & v_nv_n' & v_n' & u_n & v_n & 1 \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ &$$

between column of data matrix → least-squares yields poor results

Normalized 8-point algorithm

normalized least squares yields good results Transform image to \sim [-1,1]x[-1,1]

Normalized 8-point algorithm

- 1. Transform input by $\hat{\mathbf{x}}_i = T\mathbf{x}_i$, $\hat{\mathbf{x}}_i' = T\mathbf{x}_i'$
- 2. Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$
- 3. $\mathbf{F} = \mathbf{T}'^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$

Normalized 8-point algorithm

```
[x1, T1] = normalise2dpts(x1);
[x2, T2] = normalise2dpts(x2);
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ...
    x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ...
     x1(1,:)'
                   x1(2,:)' ones(npts,1)];
[U,D,V] = svd(A);
F = reshape(V(:, 9), 3, 3)';
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) 0])*V';
% Denormalise
F = T2'*F*T1;
```

Results (ground truth)

Results (8-point algorithm)

Results (normalized 8-point algorithm)

What about more than two views?

 The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*

 The geometry of four views is described by a 3 x 3 x 3 x 3 tensor called the *quadrifocal* tensor

After this it starts to get complicated...

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).

Total reconstruction time: 23 hours

Number of cores: 352