
Lecture 5: Feature descriptors and matching

CS5670: Computer Vision
Noah Snavely

Reading

• Szeliski: 4.1

Local features: main components

1) Detection: Identify the

interest points

2) Description: Extract

vector feature descriptor

surrounding each interest

point.

3) Matching: Determine

correspondence between

descriptors in two views

],,[)1()1(

11 dxx x

],,[)2()2(

12 dxx x

Kristen Grauman

Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point,
find similar descriptors between the two images

?

Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities
– Simple option: match square windows around the point

– State of the art approach: SIFT
• David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

?

http://www.cs.ubc.ca/~lowe/keypoints/

Invariance vs. discriminability

• Invariance:

– Descriptor shouldn’t change even if image is
transformed

• Discriminability:

– Descriptor should be highly unique for each point

Image transformations revisited

• Geometric

Rotation

Scale

• Photometric

Intensity change

Invariant descriptors

• We looked at invariant / covariant detectors

• Most feature descriptors are also designed to be
invariant to
– Translation, 2D rotation, scale

• They can usually also handle
– Limited 3D rotations (SIFT works up to about 60 degrees)

– Limited affine transforms (some are fully affine invariant)

– Limited illumination/contrast changes

How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant

2. Design an invariant feature descriptor

– Simplest descriptor: a single 0
• What’s this invariant to?

– Next simplest descriptor: a square, axis-aligned 5x5
window of pixels

• What’s this invariant to?

– Let’s look at some better approaches…

• Find dominant orientation of the image patch

– E.g., given by xmax, the eigenvector of H corresponding to max (the
larger eigenvalue)

– Rotate the patch according to this angle

Rotation invariance for
feature descriptors

Figure by Matthew Brown

Take 40x40 square window
around detected feature

– Scale to 1/5 size (using
prefiltering)

– Rotate to horizontal

– Sample 8x8 square window
centered at feature

– Intensity normalize the
window by subtracting the
mean, dividing by the
standard deviation in the
window

CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown

Detections at multiple scales

Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2

angle histogram

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

SIFT Example

sift

868 SIFT features

Other descriptors

• HOG: Histogram of Gradients (HOG)
– Dalal/Triggs

– Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
– Perceptually motivated

– Used in Visual SLAM

• LIFT: Learned Invariant Feature Transform
– Learned via deep learning

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114

Questions?

Summary

• Keypoint detection: repeatable
and distinctive

– Corners, blobs, stable regions

– Harris, DoG

• Descriptors: robust and selective

– spatial histograms of orientation

– SIFT and variants are typically good
for stitching and recognition

– But, need not stick to one

Which features match?

Feature matching

Given a feature in I1, how to find the best match
in I2?

1. Define distance function that compares two
descriptors

2. Test all the features in I2, find the one with min
distance

Feature distance

How to define the difference between two features f1, f2?

– Simple approach: L2 distance, ||f1 - f2 ||

– can give small distances for ambiguous (incorrect) matches

I1 I2

f1 f2

f1 f2f2
'

Feature distance

How to define the difference between two features f1, f2?
• Better approach: ratio distance = ||f1 - f2 || / || f1 - f2’ ||

• f2 is best SSD match to f1 in I2

• f2’ is 2nd best SSD match to f1 in I2

• gives large values for ambiguous matches

I1 I2

Feature distance

• Does the SSD vs “ratio distance” change the
best match to a given feature in image 1?

Feature matching example

58 matches (thresholded by ratio score)

Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with
outliers later

Evaluating the results

How can we measure the performance of a feature matcher?

50

75

200

feature distance

True/false positives

The distance threshold affects performance
– True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?

– False positives = # of detected matches that are incorrect
• Suppose we want to minimize these—how to choose threshold?

50

75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

0.7

Evaluating the results

0 1

1

false positive rate

true

positive

rate

true positives

matching features (positives)

0.1

How can we measure the performance of a feature matcher?

“recall”

false positives

unmatched features (negatives)

1 - “precision”

0.7

Evaluating the results

0 1

1

false positive rate

true

positive

rate

true positives

matching features (positives)

0.1

false positives

unmatched features (negatives)

ROC curve (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

“recall”

1 - “precision”

Single number: Area
Under the Curve (AUC)

E.g. AUC = 0.87

1 is the best

More on feature detection/description

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/

Lots of applications

Features are used for:

– Image alignment (e.g., mosaics)

– 3D reconstruction

– Motion tracking

– Object recognition

– Indexing and database retrieval

– Robot navigation

– … other

Object recognition (David Lowe)

3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras
and points

Augmented Reality

Questions?

