
Lecture 5: Feature descriptors and matching

CS5670: Computer Vision
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Reading

• Szeliski: 4.1



Local features: main components

1) Detection: Identify the 

interest points

2) Description: Extract 

vector feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views
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Feature descriptors
We know how to detect good points
Next question: How to match them?

Answer: Come up with a descriptor for each point, 
find similar descriptors between the two images

?



Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities
– Simple option:  match square windows around the point

– State of the art approach:  SIFT
• David Lowe, UBC  http://www.cs.ubc.ca/~lowe/keypoints/

?

http://www.cs.ubc.ca/~lowe/keypoints/


Invariance vs. discriminability

• Invariance:

– Descriptor shouldn’t change even if image is 
transformed

• Discriminability:

– Descriptor should be highly unique for each point



Image transformations revisited

• Geometric

Rotation

Scale

• Photometric

Intensity change



Invariant descriptors

• We looked at invariant / covariant detectors

• Most feature descriptors are also designed to be 
invariant to 
– Translation, 2D rotation, scale

• They can usually also handle
– Limited 3D rotations (SIFT works up to about 60 degrees)

– Limited affine transforms (some are fully affine invariant)

– Limited illumination/contrast changes



How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant

2.  Design an invariant feature descriptor

– Simplest descriptor: a single 0
• What’s this invariant to?

– Next simplest descriptor:  a square, axis-aligned 5x5 
window of pixels 

• What’s this invariant to?

– Let’s look at some better approaches…



• Find dominant orientation of the image patch

– E.g., given by xmax, the eigenvector of H corresponding to max (the 
larger eigenvalue)

– Rotate the patch according to this angle

Rotation invariance for 
feature descriptors

Figure by Matthew Brown



Take 40x40 square window 
around detected feature

– Scale to 1/5 size (using 
prefiltering)

– Rotate to horizontal

– Sample 8x8 square window 
centered at feature

– Intensity normalize the 
window by subtracting the 
mean, dividing by the 
standard deviation in the 
window

CSE 576: Computer Vision

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown



Detections at multiple scales



Basic idea:

• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient - 90) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2

angle histogram



SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


SIFT Example

sift

868 SIFT features



Other descriptors

• HOG: Histogram of Gradients (HOG)
– Dalal/Triggs

– Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
– Perceptually motivated

– Used in Visual SLAM

• LIFT: Learned Invariant Feature Transform
– Learned via deep learning

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114


Questions?



Summary

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Harris, DoG

• Descriptors: robust and selective

– spatial histograms of orientation

– SIFT and variants are typically good 
for stitching and recognition

– But, need not stick to one



Which features match?



Feature matching

Given a feature in I1, how to find the best match 
in I2?

1. Define distance function that compares two 
descriptors

2. Test all the features in I2, find the one with min 
distance



Feature distance

How to define the difference between two features f1, f2?

– Simple approach: L2 distance, ||f1 - f2 || 

– can give small distances for ambiguous (incorrect) matches 

I1 I2

f1 f2



f1 f2f2
'

Feature distance

How to define the difference between two features f1, f2?
• Better approach:  ratio distance = ||f1 - f2 || / || f1 - f2’ || 

• f2 is best SSD match to f1 in I2

• f2’  is  2nd best SSD match to f1 in I2

• gives large values for ambiguous matches

I1 I2



Feature distance

• Does the SSD vs “ratio distance” change the 
best match to a given feature in image 1?



Feature matching example

58 matches (thresholded by ratio score)



Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with 
outliers later



Evaluating the results

How can we measure the performance of a feature matcher?

50

75

200

feature distance



True/false positives

The distance threshold affects performance
– True positives = # of detected matches that are correct

• Suppose we want to maximize these—how to choose threshold?

– False positives = # of detected matches that are incorrect
• Suppose we want to minimize these—how to choose threshold?

50

75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?
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Evaluating the results

0 1

1

false positive rate

true

positive

rate

# true positives

# matching features (positives)

0.1

How can we measure the performance of a feature matcher?

“recall”

# false positives

# unmatched features (negatives)

1 - “precision”
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Evaluating the results

0 1
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false positive rate

true

positive

rate

# true positives

# matching features (positives)

0.1

# false positives

# unmatched features (negatives)

ROC curve  (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

“recall”

1 - “precision”

Single number: Area 
Under the Curve (AUC)

E.g. AUC = 0.87

1 is the best



More on feature detection/description

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.vision.ee.ethz.ch/~surf/


Lots of applications

Features are used for:

– Image alignment (e.g., mosaics)

– 3D reconstruction

– Motion tracking

– Object recognition

– Indexing and database retrieval

– Robot navigation

– … other



Object recognition (David Lowe)



3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras 
and points



Augmented Reality



Questions?


