Lecture 4: Harris corner detection
Reading

• Szeliski: 4.1
Announcements

• Project 1 code due tomorrow, 2/15, by 11:59pm on CMS
• Artifacts due Friday, 2/17 by 11:59pm on CMS
Feature extraction: Corners and blobs
Motivation: Automatic panoramas
Motivation: Automatic panoramas

GigaPan
http://gigapan.com/

Also see Google Zoom Views:
https://www.google.com/culturalinstitute/beta/project/gigapixels
Why extract features?

• Motivation: panorama stitching
 – We have two images – how do we combine them?
Why extract features?

• Motivation: panorama stitching
 – We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Why extract features?

• Motivation: panorama stitching
 – We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images
Application: Visual SLAM
Image matching

by Diva Sian

by swashford
Harder case

by Diva Sian

by scgbt
Harder still?
Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches
Feature Matching
Feature Matching
Invariant local features

Find features that are invariant to transformations

– geometric invariance: translation, rotation, scale
– photometric invariance: brightness, exposure, ...

Feature Descriptors
Advantages of local features

Locality
 – features are local, so robust to occlusion and clutter

Quantity
 – hundreds or thousands in a single image

Distinctiveness:
 – can differentiate a large database of objects

Efficiency
 – real-time performance achievable
More motivation...

Feature points are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking
- Object recognition
- Indexing and database retrieval
- Robot navigation
- ... other
Approach

Feature detection: find it
Feature descriptor: represent it
Feature matching: match it
Feature tracking: track it, when motion
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

\[x_1 = [x_1^{(1)}, \ldots, x_d^{(1)}] \]

3) Matching: Determine correspondence between descriptors in two views

\[x_2 = [x_1^{(2)}, \ldots, x_d^{(2)}] \]
What makes a good feature?
Want uniqueness

Look for image regions that are unusual
 – Lead to unambiguous matches in other images

How to define “unusual”?
Local measures of uniqueness

Suppose we only consider a small window of pixels

– What defines whether a feature is a good or bad candidate?
Local measure of feature uniqueness

• How does the window change when you shift it?
• Shifting the window in any direction causes a big change

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Credit: S. Seitz, D. Frolova, D. Simakov
Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD “error” $E(u,v)$:

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2$$

- We are happy if this error is high
- Slow to compute exactly for each pixel and each offset (u,v)
Taylor Series expansion of I:

$$I(x+u, y+v) = I(x,y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x} u + \frac{\partial I}{\partial y} v$$

$$\approx I(x, y) + \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...
Corner detection: the math

Consider shifting the window \(W \) by \((u,v)\)

- define an SSD “error” \(E(u,v) \):

\[
E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2
\]

\[
\approx \sum_{(x,y) \in W} [I(x, y) + I_x u + I_y v - I(x, y)]^2
\]

\[
\approx \sum_{(x,y) \in W} [I_x u + I_y v]^2
\]
Corner detection: the math

Consider shifting the window \(W \) by \((u,v)\):

- define an SSD “error” \(E(u,v) \):

\[
E(u,v) \approx \sum_{(x,y) \in W} [I_x u + I_y v]^2
\]

\[
\approx Au^2 + 2Buv + Cv^2
\]

where

\[
A = \sum_{(x,y) \in W} I_x^2,
B = \sum_{(x,y) \in W} I_x I_y,
C = \sum_{(x,y) \in W} I_y^2
\]

- Thus, \(E(u,v) \) is locally approximated as a quadratic error function
The second moment matrix

The surface $E(u,v)$ is locally approximated by a quadratic form.

$$E(u, v) \approx A u^2 + 2B uv + C v^2$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y) \in W} I_x^2$$

$$B = \sum_{(x,y) \in W} I_x I_y$$

$$C = \sum_{(x,y) \in W} I_y^2$$

Let’s try to understand its shape.
\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[
A = \sum_{(x,y) \in W} I_x^2 \\
B = \sum_{(x,y) \in W} I_x I_y \\
C = \sum_{(x,y) \in W} I_y^2
\]

Horizontal edge: \(I_x = 0 \)

\[
H = \begin{bmatrix} 0 & 0 \\ 0 & C \end{bmatrix}
\]
\[E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[H = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \]

\[A = \sum_{(x,y) \in W} I_x^2 \]

\[B = \sum_{(x,y) \in W} I_x I_y \]

\[C = \sum_{(x,y) \in W} I_y^2 \]

Vertical edge: \(I_y = 0 \)
General case

We can visualize H as an ellipse with axis lengths determined by the *eigenvalues* of H and orientation determined by the *eigenvectors* of H.

Ellipse equation:

$$[u \ v] \ H \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

- $\lambda_{\text{max}}, \lambda_{\text{min}}$: eigenvalues of H
- Direction of the fastest change
- Direction of the slowest change

$$\frac{1}{\sqrt{\lambda_{\text{max}}}} \quad \frac{1}{\sqrt{\lambda_{\text{min}}}}$$
Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix \(A \) are the vectors \(x \) that satisfy:

\[
Ax = \lambda x
\]

The scalar \(\lambda \) is the **eigenvalue** corresponding to \(x \)

- The eigenvalues are found by solving:

\[
det(A - \lambda I) = 0
\]

- In our case, \(A = H \) is a 2x2 matrix, so we have

\[
det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0
\]

- The solution:

\[
\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]
\]

Once you know \(\lambda \), you find \(x \) by solving

\[
\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0
\]
Corner detection: the math

\[E(u, v) \approx \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

Eigenvalues and eigenvectors of \(H \)

- Define shift directions with the smallest and largest change in error
- \(x_{\text{max}} \) = direction of largest increase in \(E \)
- \(\lambda_{\text{max}} \) = amount of increase in direction \(x_{\text{max}} \)
- \(x_{\text{min}} \) = direction of smallest increase in \(E \)
- \(\lambda_{\text{min}} \) = amount of increase in direction \(x_{\text{min}} \)
Corner detection: the math

How are λ_{max}, x_{max}, λ_{min}, and x_{min} relevant for feature detection?

• What’s our feature scoring function?
Corner detection: the math

How are λ_{max}, x_{max}, λ_{min}, and x_{min} relevant for feature detection?

• What’s our feature scoring function?

Want $E(u,v)$ to be large for small shifts in all directions

• the minimum of $E(u,v)$ should be large, over all unit vectors $[u \ v]$
• this minimum is given by the smaller eigenvalue (λ_{min}) of H
Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are small; E is almost constant in all directions.
- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions.
- $\lambda_1 \gg \lambda_2$ (for “Edge”)
- $\lambda_2 \gg \lambda_1$ (for “Corner”)
Corner detection summary

Here’s what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{\text{min}} > \text{threshold}$)
- Choose those points where λ_{min} is a local maximum as features
Here’s what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{\text{min}} > \text{threshold}$)
- Choose those points where λ_{min} is a local maximum as features
The Harris operator

λ_{min} is a variant of the “Harris operator” for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\text{determinant}(H)}{\text{trace}(H)}$$

- The *trace* is the sum of the diagonals, i.e., $\text{trace}(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
- Lots of other detectors, this is one of the most popular
The Harris operator

Harris operator

λ_{min}
f value (red high, blue low)
Threshold \((f > \text{value})\)
Find local maxima of f
Harris features (in red)
Weighting the derivatives

• In practice, using a simple window \(W \) doesn’t work too well

\[
H = \sum_{(x,y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]

• Instead, we’ll weight each derivative value based on its distance from the center pixel

\[
H = \sum_{(x,y) \in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}
\]
Harris Detector \[\text{[Harris88]}\]

- **Second moment matrix**

\[
\mu(\sigma_I, \sigma_D) = g(\sigma_I) \ast \begin{bmatrix}
I_x^2(\sigma_D) & I_xI_y(\sigma_D) \\
I_xI_y(\sigma_D) & I_y^2(\sigma_D)
\end{bmatrix}
\]

1. Image derivatives (optionally, blur first)

\[
det M = \lambda_1\lambda_2 \\
\text{trace } M = \lambda_1 + \lambda_2
\]

2. Square of derivatives

3. Gaussian filter \(g(\sigma_I)\)

4. Cornerness function – both eigenvalues are strong

5. Non-maxima suppression
Harris Corners – Why so complicated?

• Can’t we just check for regions with lots of gradients in the x and y directions?
 – No! A diagonal line would satisfy that criteria

![Current Window](image-url)
Questions?