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Collision detection
Goal: determine if two objects collide during a particular movement 

• example: path planning for robotics or puzzles

• need to verify a particular motion path can execute with no collisions

slide borrowed from Doug James



Proximity queries
Goal: detect when two objects approach within a threshold 

• example: particle based fluid simulation


• each particle needs interacts with all particles closer than distance R

slide borrowed from Doug James



Continuous vs. instantaneous collision detection
Version 1: “Are these two objects colliding right now?” 

• instantaneous collision detection

• can miss collisions if you check once per frame


Version 2: “If and when do these two moving objects collide?” 
• continuous collision detection (CCD)

• can guarantee you don’t miss collisions

“Sum-of-squares Geometry Processing.” [Marschner et al. 2021]

image borrowed from Doug James

https://dl.acm.org/doi/abs/10.1145/3478513.3480551




Collision detection overview
Narrow phase collision detection 

• detects collisions between individual primitives

• produces definitive answers depending on the goals


- yes/no for collision or proximity

- time of collision

- k nearest neighbors


• specific methods depend on primitive type (particles, lines, triangles, etc.)


Broad phase collision detection 
• conservatively eliminates potential collisions

• reduces the set of narrow-phase tests required

• uses various spatial data structures for efficiency

• specific methods depend on data structure (trees, grids, lists, etc.)

note: there’s some 
disagreement between 

sources about where the 
boundary between “broad” 

and “narrow” goes…
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Simple narrow-phase example
Colliding spheres 

• example for now, will return to more interesting cases


• spheres or circles intersect if ∥ci − cj∥2 < (ri + rj)2
rj

cj

ci

ri



Broad phase algorithm #0
Brute force loop over all pairs 

• problem: O(N2)

for i in range(N):


for j in range(N):


CheckCollision(i, j)



Avoiding N2

Sometimes there really are  interactions 
• have to deal with it


• reduce to  or  by hierarchically 
approximating distant interactions

- Fast Multipole Method (FMM)

- Barnes-Hut approximation


In simulations usually only neighboring 
objects interact 
• actual number of contacts is probably  

for  objects

• goal is to efficiently search for “active contacts”

N2

O(N) O(N log N)

O(N)
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Collision detection by sort / sweep
Older idea: sort and sweep 

• choose an axis (call it x) and project objects onto it

• put the min (begin) and max (end) x coordinates for 

each object into a big list

• sort the list

• traverse the list


- begin object i -> add object i to active set 
check object i against active set


- end object i -> remove object i from active set


Problems 
• sorting is not so parallel friendly

• what is the worst case for this?  what is the time complexity for uniformly distributed objects?

Scott Le Grand, GPU Gems 3 Chapter 32



Regular grid broad phase: 1D subdivision
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Regular grid broad phase: 1D subdivision
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Regular grid broad phase: 2D subdivision
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Regular grid broad phase: 2D subdivision
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2D spatial subdivision
Advantages [demo] 

• often quite efficient; fairly simple to implement; reasonably parallel-friendly


Disadvantages 
• large tables of possibly mostly empty particle lists; need to set grid dimensions up front

• what are the cases where it gets slow?


Variations 
• spatial hashing: rather than grid[x,y],  

use table[hash(x,y)] for a suitable hash function

- allows effectively unlimited grid; hash collisions  

just lead to some extra collision tests

• quadtrees, octrees: allow balancing cell occupancy  

when objects are nonuniformly distributed
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Teschner et al 2003

https://openprocessing.org/sketch/1861797
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5881&rep=rep1&type=pdf


Bounding volumes

Simple idea to speed up 
collision checks 
• first find a volume that 

contains (bounds) each 
object


• then when you want to test two objects for collision, first 
check whether their bounding volumes intersect


• no BV intersection  no collision, guaranteed!


• BV intersection  no guarantee, need to check for collisions

• for efficiency of intersection testing, BVs are always convex

→

→



Bounding volume hierarchies
Similar to those used for ray intersection 

• can use any sort of bounding volume (BV)

• for any collision test, if the BV does not collide then 

the entire subtree can be skipped

• algorithms differ depending on query type

• to test against a simple obstacle for which a fast test 

is available, a simple traversal does the trick:

figure borrowed from Doug James

overlap(node, obstacle):

    if overlap_bv(node.bounds, obstacle):

        if node.is_leaf():

            return overlap_geom(node.geom, obstacle)

        else

            return overlap(node.left, obstacle) or

                overlap(node.right, obstacle)

    return false



Bounding volume hierarchies
• to test against another complex object with its own 

BVH hierarchy, traverse trees in tandem:

figure borrowed from Doug James

overlap(node1, node2):

    if overlap_bv(node1.bounds, node2.bounds):

        if node1.is_leaf() and node2.is_leaf():

            return overlap_geom(node1.geom, node2.geom)

        if node1.is_leaf():

            return overlap(node1, node2.left) or

               overlap(node1, node2.right)

        if node2.is_leaf():

            return overlap(node1.left, node2) or

               overlap(node1.right, node2)

        if node2.long_axis() > node1.long_axis():

            return overlap(node1, node2.left) or

               overlap(node1, node2.right)

        else

            return overlap(node1.left, node2) or

               overlap(node1.right, node2)

    return false





Building BVHs
Simplest way: top down splitting 

• fit BV to all the geometry you have

• split geometry into two equal sized subsets


- simple strategy: median split

- choose axis along which to split 

(typically the longest BV axis)

- split at median of projections of object 

centroids onto that axis

• recursively process the two halves




Building BVHs
Splitting according to mesh connectivity 

• might want nodes to contain contiguous parts 
of objects


• leads to a bottom-up approach

- build an adjacency graph of all primitives

- repeatedly choose an edge with lowest 

“cost” and merge the two nodes

- cost might be the volume of the resulting 

node or the height of the resulting 
subtree


• popular for deformables, produces trees likely 
to re-fit well (next slide)



Updating BVH for deforming geometry
Geometry is different each frame—what to do? 

• constructing a new tree from scratch every frame is expensive

• alternative: keep tree structure and re-fit bounds


- simple bottom-up algorithm with reasonable memory access pattern

- efficient for BVs that can efficiently bound their children

- downside: can lead to increased overlap; mesh connectivity ameliorates this

[Gottschalk et al. 1996]

http://gamma.cs.unc.edu/SSV/obb.pdf


Finding collisions between convex polyhedra
An efficient strategy for fast BV intersection 

• if the projections of two objects onto some 
axis are disjoint, the objects do not intersect 
and the axis is a separating axis


• if the objects do not intersect, a separating axis 
must exist


• for convex polygons in 2D or polyhedra in 3D, 
if there is no intersection then checking a  
finite list of potential separating axes suffices


Examples 
• 2 familiar tests for AABBs in 2D

• 4 tests for OBBs in 2D (4 distinct face normals)

• 15 tests for OBBs in 3D (6 face normals + 9 edge/edge normals)



E.g. separating axis approach for OBBs in 2D

https://www.atoft.dev/posts/2020/04/12/implementing-3d-collision-resolution/



Continuous collision detection (CCD)
Given two moving primitives: 

• do they collide in this time step?

• …and if so, when and where?


Common simplifications: 
• limit to circles, spheres, triangles, line segments

• only allow for linear motion of vertices

• only consider non-degenerate cases


- in 3D: vertex-face and edge-edge

- in 2D: vertex-edge


• degenerate cases can be handled as an 
extreme case of one of these



CCD for spheres
Given , , , , ,  

• is there a time  where the centers are at a distance ?


• positions are  and 


• let  ;  ; 


• difference is 


• collision when  or 


• quadratic: 


• there is a collision iff there is a root in 


• smallest root in  is the collision time

• (déjà vu … remember ray-sphere intersection?)

x0
·x y0

·y rx ry

t ∈ (0,h] rx + ry

x(t) = x0 + t ·x y(t) = y0 + t ·y

d0 = x0 − y0
·d = ·x − ·y R = rx + ry

d(t) = d0 + t ·d

∥d(t)∥ = R (d0 + t ·d) ⋅ (d0 + t ·d) = R2

( ·d ⋅ ·d)t2 + 2(d0 ⋅ ·d)t + (d0 ⋅ d0 − R2) = 0

(0,h]

(0,h]



CCD for line segments
The only nondegenerate case is vertex-edge 

• vertex  and edge endpoints  and 


• given: 


• collision occurs when  are collinear 
and  is between  and 


• simple collinearity test: area of triangle is zero


• triangle edges   
and 


• area , set to zero


• quadratic 


• smallest root in  for which  is between  and  (if any) is the collision time

x(t) y(t) z(t)

x0, y0, z0, ·x, ·y, ·z

{x(t), y(t), z(t)}
x y z

c(t) = x(t) − y(t) = c0 + t ·c
d(t) = z(t) − y(t) = d0 + t ·d

2A(t) = c(t) ∧ d(t)

( ·c ∧ ·d)t2 + (c0 ∧ ·d + ·c ∧ d0)t + (c0 ∧ d0) = 0

(0,h] x y z

v ∧ w = (v × w)z
= vxwy − vywx



Robust quadratic formula
We all learned the quadratic formula in high school 

What they didn’t tell us 
• there are two equally reasonable quadratic formulas


• each one is inaccurate for certain cases (e.g.  or  near zero)

• if you just type in the familiar formula, you will sometimes get inaccurate collisions!


More stable procedure: 
• compute   ; if  there are no roots


• compute    (no subtraction, no cancellation!)


• roots are  and    (exercise: show that these are equal when )


• (see Numerical Recipes or other intro numerics textbooks)

a c

D = b2 − 4ac D < 0

r = − 1
2 (b + sign(b) D)

t1 = r
a t2 = c

r D = 0

t =
−b ± b2 − 4ac

2a

t =
2c

−b ∓ b2 − 4ac



CCD for triangle meshes
Here we have both edge-edge and point-face collisions 

Analogous approach to 2D works 
• both cases are actually the same (weird!)

• collision happens when the 4 involved vertices are coplanar, aka. 

volume of tetrahedron is zero


• points , velocities 


• think about tetrahedron edges , , 


• 


• this is a cubic equation in ; collision time is the smallest root in 
 for which the objects actually collide (vertex inside 

triangle, or line intersection inside edges)

w(t), x(t), y(t), z(t) ·w(t), …, ·z(t)

a = x − w b = y − w c = z − w

2V(t) = det [a(t) b(t) c(t)] = a(t) ⋅ (b(t) × c(t)) = 0

t
[0,h)


