CS5643
08 Collision detection

Steve Marschner

Cornell University
Spring 2023

(many images borrowed from Doug James’s Stanford CS 248b slides)

https://cs248b.su.domains/cgi-bin/autumn22/index.php/home

Collision detection

Goal: determine if two objects collide during a particular movement

-+ example: path planning for robotics or puzzles

* need to verify a particular motion path can execute with no collisions

Collision-free motion planner g X v ' PRM Big Map
Number of samples | 100 '3 | & Floor
Edges per sample | 25 [2] W * ABBIRB 2600-12/1.85B...
Robot step (deg) l 20 2 ‘ v ABB IRB 2600-12/1.85
¥ Weld Gun
Update Map
@ Start Location
Add selected targets @ End Location
104 samples and 1667 edges L T
Display Samples [] Display map 1 .
New sample edges l 25 |5 l
Link selected targets/programs
a a a a a a
https://robodk.com/blog/motion-planning-trend/ https://xinyazhang.gitlab.io/puzzletunneldiscovery/

slide borrowed from Doug James

ProxXimity queries

Goal: detect when two objects approach within a threshold

-+ example: particle based fluid simulation

- each particle needs interacts with all particles closer than distance R

—

Position Based Fluids [Macklin and Mueller 2013]

slide borrowed from Doug James

Continuous vs. Instantaneous collision detection

Version 1: “Are these two objects colliding right now?”

- Instantaneous collision detection

[k

t=0

- [k

» can miss collisions if you check once per frame At

N

Version 2: “If and when do these two moving objects collide®?” imageborrowed from Doug James

- continuous collision detection (CCD)

+ can guarantee you don’t miss collisions

-~

“Sum-of-squares Geometry Processing.” [Marschner et al. 2021]

t =0.8377

https://dl.acm.org/doi/abs/10.1145/3478513.3480551

Collision detection overview

Narrow phase collision detection note: there’s some
disagreement between
- detects collisions between individual primitives sources about where the
boundary between “broad”
+ produces definitive answers depending on the goals and “narrow” goes. ..

- yes/no for collision or proximity
- time of collision
- K nearest neighbors

+ specific methods depend on primitive type (particles, lines, triangles, etc.)

Broad phase collision detection

+ conservatively eliminates potential collisions
+ reduces the set of narrow-phase tests required
+ uses various spatial data structures for efficiency

- specific methods depend on data structure (trees, grids, lists, etc.)

ISIon

Coll
Response

>

Module

on

ision Detect

Coll

-

o
n
©
=
o
O
©
(@)
—
o

S

Geometry

N

K2

SN

KD
O

/\ 7
AVA

s

VA

e YaN
RIHK
KON

X

N
VAN

AV

VectorStock.com images

slide borrowed from Doug James

slide borrowed from Doug James VectorStock.com images

Geometry

-

S

Collision Detection Module

Broad Phase

Narrow Phase

N

"

slide borrowed from Doug James

Collision
Response

VectorStock.com images

/ Collision Detection Module \

Geometry I Broad Phase ' Narrow Phase
\;J 7/

Collision
Response

slide borrowed from Doug James VectorStock.com images

ISIon

VectorStock.com images

@
7
-
o
o
"
[

14

Coll

N

Module

ion

ision Detect

Coll

/

4/ !fa%.ﬁ,mmw.mﬂ
SRS
§ b"»"é"“b 74y

W
W=7 < WA

Broad Phase

S

Geometry

slide borrowed from Doug James

Simple narrow-phase example

Colliding spheres

-+ example for now, will return to more interesting cases

. spheres or circles intersect if ||c; — ch2 < (r;+ Ifl-)2

O

Broad phase algoritnm +

Brute force loop over all pairs
. problem: O(N?)

for iin range(N):
for j in range(N):
CheckCollision(i, j)

Avoiding N2

:9.83125
1337

Sometimes there really are NV ’ interactions

- have to deal with it

-t -...,.,‘ SRR . .‘v"
DA TR LN L
v? o
~

. gt . e Yl .I...':.. .._ ’ -t
'.:‘?';':f .-';.)?“-: wlye 3 \-.' S

- reduce to O(N) or O(N log N) by hierarchically
approximating distant interactions

- Fast Multipole Method (FMM)
- Barnes-Hut approximation

In simulations usually only neighboring y
objects interact InsideHPC

- actual number of contacts is probably O(N)
for /N objects

o
-
»
"

- goal Is to efficiently search for “active contacts”

......
' —ry .
’ } :‘-i.l) r
&

owsp NIJ 1UoeL

LT

.- T) - y . 4 B A, .-'. AR 5
e L e » - = . . 350) N L3 AR TS W e TN ST A AN
DO SR I NATE 0 0 e AL s S 3 N R U e e LI, A o N e N AT N e b B M o oAy

Collision detection by sort / sweep

Older idea: sort and sweep

+ choose an axis (call it x) and project objects onto it 5

+ put the min (begin) and max (end) x coordinates for ~
each object into a big list

- sort the list

- traverse the list

- begin object / -> add object / to active set
check object / against active set

- >

- end object / -> remove object / from active set sonting Axis o >

® >

B1 B3 E1 B2 E3 E2

PrObIemS Scott Le Grand, GPU Gems 3 Chapter 32

- sorting is not so parallel friendly

-+ what is the worst case for this? what is the time complexity for uniformly distributed objects?

Regular grid proad phase: 1D subdivision

Construction:

e Divide space into N bins
of equal width, h

e Add each object to each
bin that its bounding

volume overlaps:
o Use 1D overlap test

Cell Index, i: Given coordinate x,
find containing cell index(x)

using Math.floor(x/h) clamped
to [O,N-1].

slide borrowed from Doug James

Regular grid proad phase: 1D subdivision

Overlap Testing:

e Given test bound ‘
e [ind overlapping cells,
and for each bound ‘

o Do overlap test “

e Return overlapping results

as a set.

On0
Q: Can duplicate overlaps occur?

Weakness of 1D subdivision?

O . N-1

slide borrowed from Doug James

Regular grid proad phase: 2D subdivision

Construction:

e Divide space Iinto
NXx-by-Ny bins of constant
width, h (or hx & hy)

® Add each object to each
bin that its bounding

volume overlaps:
o Use 1D overlap tests

Cell Index (1,)): Given coords x &,
i = floor(x/h) clamped to [O,Nx-1],
J = floor(y/hy) clamped to [O,Ny-1].

NX-1

slide borrowed from Doug James

Regular grid proad phase: 2D subdivision

Overlap Testing:

e Given test bound '
e F[ind overlapping cells,
and for each bound ‘

o Do overlap test “

e Return overlapping results

0
as a set.

On0O
Q: Can duplicate overlaps occur?

Weakness of 2D subdivision?

0, : NX-1

slide borrowed from Doug James

2D spatial suodivision

Advantages [demo]

- often quite efficient; fairly simple to implement; reasonably parallel-friendly

demo by Doug James

Disadvantages

- large tables of possibly mostly empty particle lists; need to set grid dimensions up front

- what are the cases where it gets slow?

Variations -

- spatial hashing: rather than grid[x,y], N
use table[hash(x,y)] for a suitable hash function

- allows effectively unlimited grid; hash collisions =

just lead to some extra collision tests

Vo

YYYY VYYVOYY

® —> & —>

Teschner et al 2003

+ quadtrees, octrees: allow balancing cell occupancy
when objects are nonuniformly distributed

https://openprocessing.org/sketch/1861797
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5881&rep=rep1&type=pdf

BQ Uit d 1N g \/O ‘ LM ES BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

Simple idea to speed up
collision checks /'
- first find a volume that

contains (bounds) each SPHERE AABB 8-DOP CONVEX HULL

O bj eCt [Ericsson 2004]

- then when you want to test two objects for collision, first
check whether their bounding volumes intersect

- no BV intersection — no collision, guaranteed!

- BV intersection — no guarantee, need to check for collisions

- for efficiency of intersection testing, BVs are always convex

SouNding volume nierarcnies

Similar to those used for ray intersection

B
+can use any sort of bounding volume (BV) @ C%

- for any collision test, if the BV does not collide then O

the entire subtree can be skipped

- algorithms differ depending on query type

- to test against a simple obstacle for which a fast test
IS avallable, a simple traversal does the trick: A

overlap(node, obstacle):
if overlap_bv(node.bounds, obstacle): B C
if node.is_leaf():
return overlap_geom(node.geom, obstacle)

else A
return overlap(node.left, obstacle) or
overlap(node.right, obstacle)

return false @

figure borrowed from Doug James

SouNding volume nierarcnies

- to test against another complex object with its own A

BVH hierarchy, traverse trees in tandem: @ B C %

overlap(nodel, nodelk):
if overlap_bv(nodel.bounds, nodeLg.bounds): | f i

if nodel.is_leaf() and noded.is_leaf():
return overlap_geom(nodel.geom, nodeld.geom)
if nodel.is_leaf():
return overlap(nodel, nodel.left) or
overlap(nodel, nodel.right) A
if noded.is_leaf():
return overlap(nodel.left, nodel) or
overlap(nodel.right, nodeld) B C
if nodel.long_axis() > nodel.long_ axis():
return overlap(nodel, nodel.left) or
overlap(nodel, nodel.right) A

else
return overlap(nodel.left, nodel) or
overlap(nodel.right, nodeld)

return false @

figure borrowed from Doug James

Suilding BVHS

Simplest way: top down splitting

- fit BV to all the geometry you have

- split geometry into two equal sized subsets

- simple strategy: median split | ¥

- choose axis along which to split .
(typically the longest BV axis)

- split at median of projections of object | \ll
centroids onto that axis
\J o

* recursively process the two halves

Suilding BVHS

Splitting according to mesh connectivity

 might want nodes to contain contiguous parts
of objects

+ leads to a bottom-up approach

- build an adjacency graph of all primitives .

P

- repeatedly choose an edge with lowest : e
*cost” and merge the two nodes

- cost might be the volume of the resulting
node or the height of the resulting VRN
subtree # ®

+ popular for deformables, produces trees likely 7\ Q/ \\
to re-fit well (next slide) / \

Updating BVH for deforming geometry

Geometry is different each frame—what to do?

+ constructing a new tree from scratch every frame is expensive

- alternative: keep tree structure and re-fit bounds
- simple bottom-up algorithm with reasonable memory access pattern
- efficient for BVs that can efficiently bound their children
- downside: can lead to increased overlap; mesh connectivity ameliorates this

~ N
N

a
N

B B B B

Undeformed (a) Refi tted (b) Rebuilt [Gottschalk et al. 1996]

http://gamma.cs.unc.edu/SSV/obb.pdf

—INdiNg collisions between convex polyhedra

An efficient strategy for fast BV intersection

- If the projections of two objects onto some
axis are disjoint, the objects do not intersect
and the axis is a separating axis

- If the objects do not intersect, a separating axis
must exist

+ for convex polygons in 2D or polyhedra in 3D,
If there is no intersection then checking a
finite list of potential separating axes suffices

Examples

- 2 familiar tests for AABBs in 2D https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

- 4 tests for OBBs in 2D (4 distinct face normals)

-+ 15 tests for OBBs in 3D (6 face normals + 9 edge/edge normals)

E.J. separating axis approach for OBBs in 2D

https://www.atoft.dev/posts/2020/04/12/implementing-3d-collision-resolution/

Continuous collision detection (CCD)

Given two moving primitives:

+ do they collide in this time step?

- ...and if so, when and where”?

Common simplifications:

limit to circles, spheres, triangles, line segments
only allow for linear motion of vertices

only consider non-degenerate cases
- In 3D: vertex-face and edge-edge
- In 2D: vertex-edge

degenerate cases can be handled as an
extreme case of one of these

CCD for spheres

Given X, X, Yo, ¥ 7, ry
. is there a time ¢ € (0,/] where the centers are at a distance 7, + 1,7

- positions are X(f) = Xy + X and y(¢) =y, + ty
letdg=X)—yy;d=X-y;R=r+r,

. difference is d(¢) = d, + td

- collision when ||d(?)|| = R or (d, + td) - (dy + td) = R? X

. quadratic: (d - d)z* + 2(d, - d)t + (dy - dy — R?) = 0

- there is a collision iff there is a root in (0,/]

- smallest root in (0,/] is the collision time

- (déja vu ... remember ray-sphere intersection?)

CCD for line segments

The only hondegenerate case is vertex-edge

- vertex X(7) and edge endpoints y(¢) and z(?)

* given: Xo, yO’ Zo, X, y, Z

- collision occurs when {x(7), y(¢), z(?) } are collinear
and X Is between y and z

- simple collinearity test: area of triangle is zero

- triangle edges ¢(¢) = X(¢) — y(¢) = ¢y + 1€
andd(?) = z(t) — y(©) = d, + d

VAW=(VXW),
- area 2A(1) = c¢() A d(7), set to zero = VW, — VW,

. quadratic (¢ Ad)t? + (cgAd + ¢ Adyt+ (coAady) =0

- smallest root in (0,/] for which X is between y and z (if any) is the collision time

Robust quadratic formula

We all learned the quadratic formula in high school b +/b2 - dac
[=
What they didn’t tell us ca
- there are two equally reasonable quadratic formulas f = 2
—b F\/b2 - dac

- each one is inaccurate for certain cases (e.g. a or ¢ near zero)

- If you just type in the familiar formula, you will sometimes get inaccurate collisions!

More stable procedure:

. compute D = b? — dac :if D < 0 there are no roots

. compute r = — % (b + sign(b)\/D) (no subtraction, no cancellation!)

. roots are 1; = 5 and 1, = % (exercise: show that these are equal when D = ()

- (see Numerical Recipes or other intro numerics textbooks)

CCD for triangle meshes

Here we have both edge-edge and point-face collisions

Analogous approach to 2D works

- both cases are actually the same (weird!)

- collision happens when the 4 involved vertices are coplanar, aka.
volume of tetrahedron is zero

- points w(?), X(7), y(?), z(¢), velocities w(?), ..., Z(1)
- think about tetrahedronedgesa =x—w,b=y—-w,¢c=z—w

. 2V(r) = det |a(r) b() c@®)| =a@®) - (b(r) X ¢(r)) =0

- this Is a cubic equation in f; collision time Is the smallest root In

[0,h) for which the objects actually collide (vertex inside
triangle, or line intersection inside edges)

