
CS5643 
08 Collision detection

Steve Marschner 
Cornell University

Spring 2023

(many images borrowed from Doug James’s Stanford CS 248b slides)

https://cs248b.su.domains/cgi-bin/autumn22/index.php/home

Collision detection
Goal: determine if two objects collide during a particular movement

• example: path planning for robotics or puzzles

• need to verify a particular motion path can execute with no collisions

slide borrowed from Doug James

Proximity queries
Goal: detect when two objects approach within a threshold

• example: particle based fluid simulation

• each particle needs interacts with all particles closer than distance R

slide borrowed from Doug James

Continuous vs. instantaneous collision detection
Version 1: “Are these two objects colliding right now?”

• instantaneous collision detection

• can miss collisions if you check once per frame

Version 2: “If and when do these two moving objects collide?”
• continuous collision detection (CCD)

• can guarantee you don’t miss collisions

“Sum-of-squares Geometry Processing.” [Marschner et al. 2021]

image borrowed from Doug James

https://dl.acm.org/doi/abs/10.1145/3478513.3480551

Collision detection overview
Narrow phase collision detection

• detects collisions between individual primitives

• produces definitive answers depending on the goals

- yes/no for collision or proximity

- time of collision

- k nearest neighbors

• specific methods depend on primitive type (particles, lines, triangles, etc.)

Broad phase collision detection
• conservatively eliminates potential collisions

• reduces the set of narrow-phase tests required

• uses various spatial data structures for efficiency

• specific methods depend on data structure (trees, grids, lists, etc.)

note: there’s some
disagreement between

sources about where the
boundary between “broad”

and “narrow” goes…

slide borrowed from Doug James

slide borrowed from Doug James

slide borrowed from Doug James

slide borrowed from Doug James

slide borrowed from Doug James

Simple narrow-phase example
Colliding spheres

• example for now, will return to more interesting cases

• spheres or circles intersect if ∥ci − cj∥2 < (ri + rj)2
rj

cj

ci

ri

Broad phase algorithm #0
Brute force loop over all pairs

• problem: O(N2)

for i in range(N):

for j in range(N):

CheckCollision(i, j)

Avoiding N2

Sometimes there really are interactions
• have to deal with it

• reduce to or by hierarchically 
approximating distant interactions

- Fast Multipole Method (FMM)

- Barnes-Hut approximation

In simulations usually only neighboring 
objects interact
• actual number of contacts is probably  

for objects

• goal is to efficiently search for “active contacts”

N2

O(N) O(N log N)

O(N)
N

InsideHPC

Taichi DEM
 dem

o

Collision detection by sort / sweep
Older idea: sort and sweep

• choose an axis (call it x) and project objects onto it

• put the min (begin) and max (end) x coordinates for 

each object into a big list

• sort the list

• traverse the list

- begin object i -> add object i to active set 
check object i against active set

- end object i -> remove object i from active set

Problems
• sorting is not so parallel friendly

• what is the worst case for this? what is the time complexity for uniformly distributed objects?

Scott Le Grand, GPU Gems 3 Chapter 32

Regular grid broad phase: 1D subdivision

slide borrowed from Doug James

Regular grid broad phase: 1D subdivision

slide borrowed from Doug James

Regular grid broad phase: 2D subdivision

slide borrowed from Doug James

Regular grid broad phase: 2D subdivision

slide borrowed from Doug James

2D spatial subdivision
Advantages [demo]

• often quite efficient; fairly simple to implement; reasonably parallel-friendly

Disadvantages
• large tables of possibly mostly empty particle lists; need to set grid dimensions up front

• what are the cases where it gets slow?

Variations
• spatial hashing: rather than grid[x,y],  

use table[hash(x,y)] for a suitable hash function

- allows effectively unlimited grid; hash collisions  

just lead to some extra collision tests

• quadtrees, octrees: allow balancing cell occupancy  

when objects are nonuniformly distributed

de
m

o
by

 D
ou

g
Ja

m
es

Teschner et al 2003

https://openprocessing.org/sketch/1861797
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.5881&rep=rep1&type=pdf

Bounding volumes

Simple idea to speed up 
collision checks
• first find a volume that 

contains (bounds) each 
object

• then when you want to test two objects for collision, first 
check whether their bounding volumes intersect

• no BV intersection no collision, guaranteed!

• BV intersection no guarantee, need to check for collisions

• for efficiency of intersection testing, BVs are always convex

→

→

Bounding volume hierarchies
Similar to those used for ray intersection

• can use any sort of bounding volume (BV)

• for any collision test, if the BV does not collide then

the entire subtree can be skipped

• algorithms differ depending on query type

• to test against a simple obstacle for which a fast test

is available, a simple traversal does the trick:

figure borrowed from Doug James

overlap(node, obstacle):

 if overlap_bv(node.bounds, obstacle):

 if node.is_leaf():

 return overlap_geom(node.geom, obstacle)

 else

 return overlap(node.left, obstacle) or

 overlap(node.right, obstacle)

 return false

Bounding volume hierarchies
• to test against another complex object with its own

BVH hierarchy, traverse trees in tandem:

figure borrowed from Doug James

overlap(node1, node2):

 if overlap_bv(node1.bounds, node2.bounds):

 if node1.is_leaf() and node2.is_leaf():

 return overlap_geom(node1.geom, node2.geom)

 if node1.is_leaf():

 return overlap(node1, node2.left) or

 overlap(node1, node2.right)

 if node2.is_leaf():

 return overlap(node1.left, node2) or

 overlap(node1.right, node2)

 if node2.long_axis() > node1.long_axis():

 return overlap(node1, node2.left) or

 overlap(node1, node2.right)

 else

 return overlap(node1.left, node2) or

 overlap(node1.right, node2)

 return false

Building BVHs
Simplest way: top down splitting

• fit BV to all the geometry you have

• split geometry into two equal sized subsets

- simple strategy: median split

- choose axis along which to split

(typically the longest BV axis)

- split at median of projections of object

centroids onto that axis

• recursively process the two halves

Building BVHs
Splitting according to mesh connectivity

• might want nodes to contain contiguous parts
of objects

• leads to a bottom-up approach

- build an adjacency graph of all primitives

- repeatedly choose an edge with lowest

“cost” and merge the two nodes

- cost might be the volume of the resulting

node or the height of the resulting
subtree

• popular for deformables, produces trees likely
to re-fit well (next slide)

Updating BVH for deforming geometry
Geometry is different each frame—what to do?

• constructing a new tree from scratch every frame is expensive

• alternative: keep tree structure and re-fit bounds

- simple bottom-up algorithm with reasonable memory access pattern

- efficient for BVs that can efficiently bound their children

- downside: can lead to increased overlap; mesh connectivity ameliorates this

[Gottschalk et al. 1996]

http://gamma.cs.unc.edu/SSV/obb.pdf

Finding collisions between convex polyhedra
An efficient strategy for fast BV intersection

• if the projections of two objects onto some 
axis are disjoint, the objects do not intersect 
and the axis is a separating axis

• if the objects do not intersect, a separating axis 
must exist

• for convex polygons in 2D or polyhedra in 3D, 
if there is no intersection then checking a  
finite list of potential separating axes suffices

Examples
• 2 familiar tests for AABBs in 2D

• 4 tests for OBBs in 2D (4 distinct face normals)

• 15 tests for OBBs in 3D (6 face normals + 9 edge/edge normals)

E.g. separating axis approach for OBBs in 2D

https://www.atoft.dev/posts/2020/04/12/implementing-3d-collision-resolution/

Continuous collision detection (CCD)
Given two moving primitives:

• do they collide in this time step?

• …and if so, when and where?

Common simplifications:
• limit to circles, spheres, triangles, line segments

• only allow for linear motion of vertices

• only consider non-degenerate cases

- in 3D: vertex-face and edge-edge

- in 2D: vertex-edge

• degenerate cases can be handled as an 
extreme case of one of these

CCD for spheres
Given , , , , ,

• is there a time where the centers are at a distance ?

• positions are and

• let ; ;

• difference is

• collision when or

• quadratic:

• there is a collision iff there is a root in

• smallest root in is the collision time

• (déjà vu … remember ray-sphere intersection?)

x0
·x y0

·y rx ry

t ∈ (0,h] rx + ry

x(t) = x0 + t ·x y(t) = y0 + t ·y

d0 = x0 − y0
·d = ·x − ·y R = rx + ry

d(t) = d0 + t ·d

∥d(t)∥ = R (d0 + t ·d) ⋅ (d0 + t ·d) = R2

(·d ⋅ ·d)t2 + 2(d0 ⋅ ·d)t + (d0 ⋅ d0 − R2) = 0

(0,h]

(0,h]

CCD for line segments
The only nondegenerate case is vertex-edge

• vertex and edge endpoints and

• given:

• collision occurs when are collinear 
and is between and

• simple collinearity test: area of triangle is zero

• triangle edges  
and

• area , set to zero

• quadratic

• smallest root in for which is between and (if any) is the collision time

x(t) y(t) z(t)

x0, y0, z0, ·x, ·y, ·z

{x(t), y(t), z(t)}
x y z

c(t) = x(t) − y(t) = c0 + t ·c
d(t) = z(t) − y(t) = d0 + t ·d

2A(t) = c(t) ∧ d(t)

(·c ∧ ·d)t2 + (c0 ∧ ·d + ·c ∧ d0)t + (c0 ∧ d0) = 0

(0,h] x y z

v ∧ w = (v × w)z
= vxwy − vywx

Robust quadratic formula
We all learned the quadratic formula in high school

What they didn’t tell us
• there are two equally reasonable quadratic formulas

• each one is inaccurate for certain cases (e.g. or near zero)

• if you just type in the familiar formula, you will sometimes get inaccurate collisions!

More stable procedure:
• compute ; if there are no roots

• compute (no subtraction, no cancellation!)

• roots are and (exercise: show that these are equal when)

• (see Numerical Recipes or other intro numerics textbooks)

a c

D = b2 − 4ac D < 0

r = − 1
2 (b + sign(b) D)

t1 = r
a t2 = c

r D = 0

t =
−b ± b2 − 4ac

2a

t =
2c

−b ∓ b2 − 4ac

CCD for triangle meshes
Here we have both edge-edge and point-face collisions

Analogous approach to 2D works
• both cases are actually the same (weird!)

• collision happens when the 4 involved vertices are coplanar, aka.

volume of tetrahedron is zero

• points , velocities

• think about tetrahedron edges , ,

•

• this is a cubic equation in ; collision time is the smallest root in
 for which the objects actually collide (vertex inside

triangle, or line intersection inside edges)

w(t), x(t), y(t), z(t) ·w(t), …, ·z(t)

a = x − w b = y − w c = z − w

2V(t) = det [a(t) b(t) c(t)] = a(t) ⋅ (b(t) × c(t)) = 0

t
[0,h)

