CS 5643

06 Intro to Taichi

Steve Marschner
Cornell University
Spring 2023
A domain-specific language for parallel computation on sparse spatial data

- motivation: decouple the data structures from the computation

Data Structure

Hierarchical Tree of Sparse Grids

Decoupled

Computation Code

Perlin Noise Code

```python
@ti.func
def gnoise(p : vec2):
    # the four corners of the integer square where p falls
    i00 = ti.floor(p)
    i10 = i00 + vec2(1, 0)
    i01 = i00 + vec2(0, 1)
    i11 = i00 + vec2(1, 1)
    # the values of the four pseudorandom gradients, evaluated at p
    v00 = (p - i00).dot(ti.randunit(i00))
    v01 = (p - i01).dot(ti.randunit(i01))
    v10 = (p - i10).dot(ti.randunit(i10))
    v11 = (p - i11).dot(ti.randunit(i11))
    # the two blending factors (f.x and f.y) we will use to interpolate
    a = p - i00
    f = 3*a*a - 2*a*a*a
    # bilinear interpolation between the four gradient values
    return (v00 * (1-f[0]) + v10 * f[0]) * (1 - f[1]) +
            (v01 * (1-f[0]) + v11 * f[0]) * f[1]
```
Origins

- dissertation work of Yuanming Hu at MIT, introduced at SIGGRAPH in 2019–2021
- now maintained as an open source project by Yuanming at his spinoff company Taichi Graphics

What it provides

- a domain-specific language (DSL) suitable for simulation on the GPU
- a flexible set of data structures for dense and sparse grids
- an automatic differentiation system

What we will use

- we rely on the Taichi language as our way to express fast computations
- we will mainly use dense-grid data structures and will likely not use autodiff
- for your final projects you might like to explore the fancier features!
Some important issues for performance

To go fast:
- focus performance effort on a few bottlenecks
- do work in parallel
- minimize time spent waiting for data

Compute in many independent tasks
- need lots of tasks to make good use of GPUs
- one task’s behavior should not depend on another’s result
- *streaming* computation: many tasks each consuming a separate input and writing a separate output

Organize data in memory to maximize locality
- data accessed close together in time should be located close together in space
- increases effectiveness of memory hierarchy
- bottom line: store data close together and access it in order

(a typical memory hierarchy (newer examples have bigger numbers))
Organization of a Taichi program

Python code
- runs serially on CPU via Python interpreter
- keep things that don’t need to be fast in here because it is easier!

Taichi kernels
- compiled to optimized parallel code for CPU or GPU
- can be broken into Taichi functions for modularity/reuse
- cannot access data in regular Python variables directly

Taichi data containers
- are stored in memory that is fast for kernels to access
- provide control over how data is organized in memory
- data often must be copied between CPU and GPU memory to interoperate with Python
Initialization: `ti.init()`

Call it before you create your first field or call your first kernel

- OK to define functions and kernels before initialization

At initialization time you select a backend

- `ti.init(arch=ti.cpu)` and Taichi kernels run on your CPU
- `ti.init(arch=ti.gpu)` and Taichi chooses a default GPU backend
- can specify GPU API specifically with architectures `cuda`, `metal`, `opengl`, `vulkan`
- **note:** on Mac, metal is the default GPU option but vulkan is often the better/newer choice
- fancier features are only

You can also set some other useful parameters

- `ti.init(arch=ti.cpu, cpu_max_num_threads=1)` ensures serial execution for nicer debug output
- `ti.init(arch=ti.cpu, debug=True)` will enable bounds checking on all array accesses
Taichi has the usual data types and GLSL-like vector/matrix types

- to define by example: \texttt{ti.i32} (signed 32-bit int), \texttt{ti.f64} (double-precision floating point), \texttt{ti.u16} (unsigned 16-bit int)
 - can use python types \texttt{int} and \texttt{float} as aliases for default integer and floating-point types (defaults set at initialization)

- vector types generated like this
 - \texttt{ti.types.vector(4, ti.f64)} — a 64-bit floating-point 4D vector type
 - \texttt{ti.types.matrix(4, 3, int)} — a 4x3 integer matrix type

- swizzling for 2,3,4 dimension vectors works like in GLSL (v.x or v.r is v[0], etc.)

- there are also structure types (we have not used them yet)

Types are Python objects so you can store them in variables to make aliases

- \texttt{vec2 = ti.types.vector(2, ti.f32)}
Taichi data containers

To store data where you can access it from Taichi code, put it in containers

Most common: fields

- a field is an ND array of scalars, vectors, or matrices
- \(g = \text{ti.field}(\text{ti.u8}, (480,640)) \) — an 8-bit grayscale image
- \(c = \text{ti.Vector.field}(3, \text{ti.u8}, (480,640)) \) — an RGB color image
- \(f = \text{ti.field}(\text{ti.f32}, ()) \) — a 0D floating point field, aka. a single scalar
- dimensions are fixed at creation time

You can access data in fields from Python code

- \(g[20,30] = 4 \)
- \(c[30,20] = [3,4,5]; c[30,20][1] = 4; \text{not } c[30,20,1] = 4 \)
- \(c\text{.fill}(4), c\text{.to_numpy()}, c\text{.from_numpy}(ar) \) — where \(ar\text{.shape} \) is \((30,20,3)\)
Taichi kernels

A kernel is a piece of Taichi code that can be called from Python

- syntax is Python, code is parsed by Python interpreter
- semantics are a bit different; code is compiled by Taichi compiler
- various restrictions exist that don’t exist in Python

Kernels are written by decorating Python functions

- Taichi code is statically typed
- argument and return types must be provided
- max of one return statement allowed
- global Python variables are accessible but are read at compile time and become constants

```python
@ti.kernel
def square(x : ti.f32) -> ti.f32:
    return x**x
```

```python
square(42)
```

1764.0
A Taichi function is a piece of Taichi code that can be called from Taichi

- kernels can call functions; functions can call functions
- functions cannot call kernels; functions cannot be called from Python
- functions are always inlined (therefore no recursion)
- functions don’t require type hints when types can be inferred

```python
@ti.func
def sqr(x):
    return x**2
@ti.kernel
def fourth(x : ti.f32) -> ti.f32:
    return sqr(sqr(x))

fourth(4)
```

256.0
Getting data into Taichi

Constants
- you can just read them from Python globals
- their values are fixed at the time that compilation happens

Kernel parameters and return values
- pass them to and from python kernels when you call them
- their values differ across invocations

Fields
- fields are global data that can be read or written by Taichi code or Python code
- be aware that accessing individual elements from Python is slow
- fields are compile time constants in Taichi but their values are not
Loops in Taichi

Typical uses: range for or structure for
- looping over a field gives you multiple indices
- looping with `ti.grouped()` gives you a multi-index

Loops over constant lists
- the function `ti.static()` asks for an unrolled loop over a list of constant data

Loops in kernels at outermost scope are automatically parallelized
- this is where much of the performance comes from
- can be defeated for range loops with `ti.loop_config(serialized=True)`

```python
@ti.kernel
def loopy():
    for i in range(3):
        print("a", i)
    for i in field1:
        print("b", i)
    for i, j in field2:
        print("c", i, j)
    for k in ti.grouped(field2):
        print("d", k)

field1 = ti.field(int, 3)
field2 = ti.field(int, (3, 2))

loopy()
```

```python
@ti.kernel
def loopme():
    for v in ti.static(ar):
        f[None] = f[None] + v[0] * v[1]

ar = [[1, 2], [2, 1], [3, 2]]
f = ti.field(ti.i32, ())
loopme()
print(f[None])
```

```
  10
  c 2 1  d [2, 1]
  c 2 2  d [2, 2]
  c 2 3  d [2, 3]
```
Beware data races

If you forget your code is parallel you can get wrong answers

- on GPU architectures, for speed, concurrent accesses to the same memory location do not happen in any reliable order
- concurrent read-modify-write operations are unsafe by default
- architecture provides *atomic add* and other atomic operations that ensure concurrent accesses behave as if serialized in some order
- Taichi uses atomic operations for `+=` and friends
A Hands-on Tutorial of The Taichi Programming Language @ Siggraph 2020

Taichi Paper:

Taichi intro documentation:

- https://docs.taichi-lang.org/

Taichi detailed API docs:

- https://docs.taichi-lang.org/api/