13 Texture filtering
Overview

Basic sampling problem
- Texture mapping defines a signal in image space
- That signal needs to be filtered: convolved with a filter
- Approximating this drives all the basic algorithms

Antialiasing nonlinear shading
- Basic sampling suffices only if pixel and texture are linearly related
- Normal mapping is the most important nonlinearity
Texture mapping from 0 to infinity

When you go close...
Texture mapping from 0 to infinity

When you go far...
Problem: Perspective produces very high image frequencies

Solution

• Would like to render textures with one (few) samples/pixel
• Need to filter first!
Solution: pixel filtering

- Point sampling
- Area averaging
Pixel filtering in texture space

Sampling is happening in image space
- therefore the sampling filter is defined in image space
- sample is a weighted average over a pixel-sized area
- uniform, predictable, friendly problem!

Signal is defined in texture space
- mapping between image and texture is nonuniform
- each sample is a weighted average over a different sized and shaped area
- irregular, unpredictable, unfriendly!

This is a change of variable
- integrate over texture coordinates rather than image coordinates
Pixel footprints

image space

texture space
How does area map over distance?

At optimal viewing distance:
- One-to-one mapping between pixel area and texel area

When closer:
- Each pixel is a small part of the texel
- Magnification
- Interpolation is needed

When farther:
- Each pixel could include many texels
- "Minification"
- Averaging is needed
How to get a handle on pixel footprint

We have a nonlinear mapping to deal with

• image position as a function of texture coordinates: \(\mathbb{R}^2 \rightarrow \mathbb{R}^2 : \mathbf{u} \mapsto \mathbf{x}(\mathbf{u}) \)

• but that is too hard

Instead use a local linear approximation

• hinges on the derivative of \(\mathbf{u} = (u,v) \) wrt. \(\mathbf{x} = (x,y) \)

\[
\mathbf{u}(\mathbf{x} + \Delta \mathbf{x}) \approx \mathbf{u}(\mathbf{x}) + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \Delta \mathbf{x}
\]

\[
\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
\]

Matrix derivative, or Jacobian
Sizing up the situation with the Jacobian
How to tell minification from magnification

Difference is the size of the derivative

- but what is “size”?
- area: determinant of Jacobian: $\left| \frac{\partial u}{\partial x} \right|
- max-stretch: 2-norm of Jacobian (requires a singular-value computation)
- Frobenius norm of matrix (RMS of 4 entries, easy to compute)
- max dimension of bounding box of quadrilateral footprint: max-abs of 4 entries (conservative)

Take your pick; magnification is when size is more than about 1
Solutions for Minification

For magnification, use a good image interpolation method
 • bilinear (usual) or bicubic filter (fancier, smoother) are good picks
 • nearest neighbor (box filter) will give you Minecraft-style blockies

For minification, use a good sampling filter to average
 • box (simple, though not usually easier)
 • gaussian (good choice)

Challenge is to approximate the integral efficiently!
 • mipmaps
 • multi-sample anisotropic filtering (based on mipmap)
Mipmap image pyramid

MIP Maps
- Multum in Parvo: Much in little, many in small places
- Proposed by Lance Williams

Stores pre-filtered versions of texture

Supports very fast lookup
- but only of circular filters at certain scales
Given derivatives: what is level?

Need to reduce the matrix to a single number

- aka. choosing a matrix norm; several choices available with different tradeoffs
- elementwise max partial derivative:

\[
l = \log \left[\max \left(\left| \frac{\partial u}{\partial x} \right|, \left| \frac{\partial v}{\partial x} \right|, \left| \frac{\partial u}{\partial y} \right|, \left| \frac{\partial v}{\partial y} \right| \right) \right]
\]

- root-mean-square of partial derivatives:

\[
l = \log \sqrt{\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2}
\]

- either way, you get a non-integer level at which to look up
Using the MIP Map

In level, find texel and

- Return the texture value: point sampling (but still better)!
- Bilinear interpolation
- Trilinear interpolation

Level k

Level $(k + 1)$
Memory Usage

What happens to size of texture?

- level 1 takes 1/4 the memory of level 0
- level 2 takes 1/16, etc.
- in total, adds 1/3 to the storage requirements
Point sampling
Point sampling
Reference: gaussian sampling by 512x supersampling
Reference: gaussian sampling by 512x supersampling
Texture minification with a mipmap
Texture minification with a mipmap
Texture minification: supersampling vs. mipmap
Texture minification: supersampling vs. mipmap
EWA filtering (attributed to Greene & Heckbert, but they didn’t work out the MIP map part)

Treat pixel as circular
 • e.g. Gaussian filter

Use linear apx. for distortion
 • circular pixel maps to elliptical footprint
 • ellipse dimensions calc’d from quadratic

Loop over texels inside ellipse
 • actually over bounding rect
 • weight by filter value and accumulate

Select appropriate MIP map level
 • so that minor radius is 1–2 texels

Greene & Heckbert ‘86
Texture minification: supersampled vs. EWA
Texture minification: supersampled vs. EWA
Simpler anisotropic MIP mapping

EWA requires a lot of lookups for diagonally oriented footprints

Instead, approximate your footprint as a single line of blobs

- each blob is produced by taking a single bilinear sample using the standard MIP map

Number of samples proportional to major:minor axis ratio

- with some limit to bound slowness in extreme cases

This is the kind of method used when GPU says it uses “16x anisotropic texture sampling”
BILINEAR

TRILINEAR

ANISOTROPIC
Normal (or bump) maps can produce aliasing too

- shiny surface => color very sensitive to normal
- normal swings around faster as camera moves away => high contrast, high detail image

Filtering the normal map does the wrong thing

- shiny, bumpy surface at a distance becomes a shiny smooth surface
- microfacet theory tells us the non-resolved bumps produce a rough surface appearance

Normal map filtering is about producing appropriate BRDF at large scales

- bumps filtered away, replaced by roughness
- surfaces can become anisotropic depending on normal map content
LEAN Mapping

Linear Efficient Anisotropic Normal Mapping

A practical and efficient normal map antialiasing approach

Key ideas:

- Approximate normal mapping as defining a shifted normal distribution function (NDF) (rather than changing the shading frame)

\[e^{-\frac{1}{2} \tilde{\mathbf{h}}_b^T \Sigma^{-1} \tilde{\mathbf{h}}_b} \quad \rightarrow \quad e^{-\frac{1}{2} (\tilde{\mathbf{h}}_n - \tilde{\mathbf{b}}_n)^T \Sigma^{-1} (\tilde{\mathbf{h}}_n - \tilde{\mathbf{b}}_n)} \]

- Use Gaussians for the NDFs
- Approximate the sum of multiple Gaussians by adding the first and second moments
LEAN Mapping

an NDF in tangent-vector space
LEAN Mapping

combining two centered NDFs in different tangent spaces

combining two off-center NDFs in a common tangent space
LEAN mapping bottom line [Olano & Baker 2010]

Given normals from a normal map:

\[N = (\tilde{b}_n.x, \tilde{b}_n.y, \tilde{b}_n.z) \]

Store the following in the base level texture:

\[B = (\tilde{b}_n.x, \tilde{b}_n.y) \]
\[M = (\tilde{b}_n.x^2, \tilde{b}_n.y^2, \tilde{b}_n.x \tilde{b}_n.y) \]

\[(\tilde{b}_n.x, \tilde{b}_n.y) = (\tilde{b}_n.x/\tilde{b}_n.z, \tilde{b}_n.y/\tilde{b}_n.z)\]

Allow the textures B and M to be filtered by the MIP map machinery, then at shading time use an NDF defined by the mean B and the covariance:

\[
\Sigma = \begin{bmatrix}
M.x - B.x \ast B.x & M.z - B.x \ast B.y \\
M.z - B.x \ast B.y & M.y - B.y \ast B.y
\end{bmatrix}
\]
Abstract
We introduce Linear Efficient Antialiased Normal (LEAN) Mapping, a method for real-time filtering of specular highlights in bump and normal maps. The method evaluates bumps as part of a shading computation in the tangent space of the polygonal surface rather than in the tangent space of the individual bumps. By operating in a common tangent space, we are able to store information on the distribution of bump normals in a linearly-filterable form compatible with standard MIP and anisotropic filtering hardware. The necessary textures can be computed in a preprocess or generated in real-time on the GPU for time-varying normal maps. The method effectively captures the bloom in highlight shape as bumps become too small to see, and will even transform bump ridges into anisotropic shading. Unlike even more expensive methods, several layers can be combined cheaply during surface rendering, with per-pixel blending. Though the method is based on a modified Ward shading model, we show how to map between its parameters and those of a standard Blinn-Phong model for compatibility with existing art assets and pipelines, and demonstrate that both models produce equivalent results at the largest MIP levels.

1 Introduction
For over thirty years, bump mapping has been an effective method for adding apparent detail to a surface [Blinn 1978]. We use the term bump mapping to refer to both the original height texture that defines surface normal perturbation for shading, and the more common and general normal mapping, where the texture holds the actual surface normal. These methods are extremely common in video games, where the additional surface detail allows a rich visual experience without complex high-polygon models.

Unfortunately, bump mapping has serious drawbacks with filtering and antialiasing. When viewed at a distance, standard MIP mapping of a bump map can work for diffuse shading [Kilgard 2000], but fails to capture changes in specularity. A shiny but bumpy surface, seen far enough away that the bumps are no longer visible, should appear as if it were a duller surface, with formerly visible bumps becoming part of the surface microstructure. Bump mapping will instead produce a surface with the correct average normal but the original shininess (Figure 2(a-c)), which can lead to significant aliasing.

The problem is even worse for bumps with any repeated directional pattern. Bump directionality should result in anisotropic shading when the bumps are no longer individually discernible, much as with geometrically derived anisotropic shading models [Poulin and Fournier 1990]. Traditional bump maps instead revert to a symmetric highlight (Figure 2(d-f)).

Existing approaches either require precomputation too expensive to compute on the fly [Cabral et al. 1987; Fournier 1992; Westin et al. 1992; Schilling 1997; Han et al. 2007], large per-texel run-time data [Fournier 1992; Han et al. 2007], or significant approximations to the shading model [Olano and North 1997; Toksvig 2005]. Many use representations that do not combine linearly, violating a core assumption of standard texture filtering [Cabral et al. 1987; Westin et al. 1992; Schilling 1997]. We instead desire an approach that is fast, compatible with existing texture filtering hardware, and requires minimal precomputation to allow live changes to bump shapes. It should allow even extremely shiny surfaces without aliasing artifacts. As a further constraint, the method should work well with existing Blinn-Phong based lighting [Blinn 1977], LEAN mapping [Olano & Baker I3D 2010]
Figure 13: Anisotropic bump pattern as a model moves away.

LEAN mapping [Olano & Baker I3D 2010]
LEADR mapping [Dupuy et al. SIGGRAPH 2013]