02 Shading and Frames

Steve Marschner
CS5625 Spring 2016
Light reflection physics
Radiometry redux

Power

Intensity power per unit solid angle

Irradiance power per unit area

Radiance power per unit (solid angle × area)
Sources of light

Point sources
- intensity
- can be directionally varying—spotlights

Area sources
- radiance
- can be spatially varying

Directional sources
- irradiance (normal irradiance)

Environment lighting
- radiance (usually spatially varying)
- sun-sky models
Simple kinds of scattering

Ideal specular reflection
- incoming ray reflected to a single direction
- mirror-like behavior
- arises at smooth surfaces

Ideal specular transmission
- incoming ray refracted to a single direction
- glass-like behavior
- arises at smooth dielectric (nonmetal) surfaces

Ideal diffuse reflection or transmission
- outgoing radiance independent of direction
- arises from subsurface multiple scattering
Ideal specular reflection from metals
Ideal reflection and transmission from smooth dielectrics

Water (ior = 1.33)

Diamond (ior = 2.4)
Two diffuse surfaces
More complex scattering

Rough interfaces
- metal interfaces: blurred reflection
- dielectric interfaces: blurred transmission

Subsurface scattering
- liquids—milk, juice, beer, …
- coatings—paint, glaze, varnish, …
- natural materials—wood, marble, …
- biological materials—skin, plants, …
- low optical density leads to *translucency*
Reflection from rough metal interfaces

Cu ($\alpha = 0.1$)
Al (anisotropic)
Reflection and refraction at rough dielectric interfaces

Anti-glare glass ($\alpha = 0.02$)

Etched glass ($\alpha = 0.1$)
Translucent materials

“skim milk”

low optical density

high optical density
Modeling complex scattering

Opaque materials
- reflection: bidirectional reflectance distribution function (BRDF)
- transmission: bidirectional transmittance distribution function (BTDF)
- both: bidirectional scattering distribution function (BSDF)

Translucent materials
- bidirectional subsurface scattering reflectance distribution function (BSSRDF)
- more on this later, maybe
Isotropy vs. anisotropy

isotropic

anisotropic
Types of BRDF/BSDF models

Ad hoc formulas
- e.g. Blinn-Phong

Physics-based analytical models
- Lambertian
- Microfacet-based models
- Kirchhoff-based models

Measured data
- tables of data from pointwise BRDF measurements
- image-based BRDF measurements
Light reflection in shaders
all types of reflection reflect all types of illumination

- diffuse, glossy, mirror reflection
- environment, area, point illumination
Categories of illumination

<table>
<thead>
<tr>
<th></th>
<th>diffuse</th>
<th>glossy</th>
<th>mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td>indirect</td>
<td>soft indirect illumination</td>
<td>blurry reflections of other objects</td>
<td>reflected images of other objects</td>
</tr>
<tr>
<td>environment</td>
<td>soft shadows</td>
<td>blurry reflection of environment</td>
<td>reflected image of environment</td>
</tr>
<tr>
<td>area</td>
<td>soft shadows</td>
<td>shaped specular highlight</td>
<td>reflected image of source</td>
</tr>
<tr>
<td>point/directional</td>
<td>hard shadows</td>
<td>simple specular highlight</td>
<td>point reflections</td>
</tr>
</tbody>
</table>

= easy to compute using standard shaders
How to compute shading

Basic case: point or directional lights; diffuse or glossy BRDF

Type in BRDF model, plug in illumination and view direction
 • can write down model in world space, use world-space vectors
 • can write down model in surface frame, transform vectors
 • really not different

Subtleties are all about what frame to use for shading
Interpolated shading

Coarse triangle meshes are fast
Discontinuities are bad

Therefore: interpolate geometric quantities across triangles
 · goal: shading is smooth across edges

What do we interpolate?
 · what do we need to compute shading?
Shading frames

When we carry around a normal, we are defining a tangent plane

• interpolated normal defines an approximate, smoothly varying tangent plane

For some purposes, the tangent plane is enough

• e.g. computing shading for isotropic BRDFs
• any coordinate system conforming to the normal is equally good

In other cases, need a complete frame

• whenever directions within the plane are inequivalent
• e.g. anisotropic BRDFs
• e.g. tangent-frame normal maps

How to compute these from normals and texture coordinates? (blackboard)
What to interpolate

Need plane: can just interpolate a normal

Need frame: interpolate enough data to define a tangent frame

One and a half vectors rounds up to two
 • normal and one tangent vector
 • two tangent vectors

Rebuilding a frame from the vectors
 • worry about handedness matching texture coordinates (or not)
 • orthonormality gets broken by interpolation (when does that matter?)
What you need for shading

When/why you need full frames

• when you care (or not) what the orientation is
• when you care (or not) about orthonormality

What to interpolate

• underlying math question: representation of frames
• representations that behave well under interpolation

How to author orientation

• with maps
• by following a parameterization

How to deal with corner cases